BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 31152127)

  • 1. Generic Repeat Finder: A High-Sensitivity Tool for Genome-Wide De Novo Repeat Detection.
    Shi J; Liang C
    Plant Physiol; 2019 Aug; 180(4):1803-1815. PubMed ID: 31152127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of miniature inverted-repeat transposable elements (MITEs) and long terminal repeat (LTR) retrotransposons in six Citrus species.
    Liu Y; Tahir Ul Qamar M; Feng JW; Ding Y; Wang S; Wu G; Ke L; Xu Q; Chen LL
    BMC Plant Biol; 2019 Apr; 19(1):140. PubMed ID: 30987586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. detectMITE: A novel approach to detect miniature inverted repeat transposable elements in genomes.
    Ye C; Ji G; Liang C
    Sci Rep; 2016 Jan; 6():19688. PubMed ID: 26795595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TEnest: automated chronological annotation and visualization of nested plant transposable elements.
    Kronmiller BA; Wise RP
    Plant Physiol; 2008 Jan; 146(1):45-59. PubMed ID: 18032588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LtrDetector: A tool-suite for detecting long terminal repeat retrotransposons de-novo.
    Valencia JD; Girgis HZ
    BMC Genomics; 2019 Jun; 20(1):450. PubMed ID: 31159720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons?
    Tian Z; Rizzon C; Du J; Zhu L; Bennetzen JL; Jackson SA; Gaut BS; Ma J
    Genome Res; 2009 Dec; 19(12):2221-30. PubMed ID: 19789376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons.
    Xu Z; Wang H
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W265-8. PubMed ID: 17485477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal changes in transcripts of miniature inverted-repeat transposable elements during rice endosperm development.
    Nagata H; Ono A; Tonosaki K; Kawakatsu T; Sato Y; Yano K; Kishima Y; Kinoshita T
    Plant J; 2022 Mar; 109(5):1035-1047. PubMed ID: 35128739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel genome-scale repeat finder geared towards transposons.
    Li X; Kahveci T; Settles AM
    Bioinformatics; 2008 Feb; 24(4):468-76. PubMed ID: 18089620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MUSTv2: An Improved De Novo Detection Program for Recently Active Miniature Inverted Repeat Transposable Elements (MITEs).
    Ge R; Mai G; Zhang R; Wu X; Wu Q; Zhou F
    J Integr Bioinform; 2017 Aug; 14(3):. PubMed ID: 28796642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MiteFinderII: a novel tool to identify miniature inverted-repeat transposable elements hidden in eukaryotic genomes.
    Hu J; Zheng Y; Shang X
    BMC Med Genomics; 2018 Nov; 11(Suppl 5):101. PubMed ID: 30453969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific suppression of long terminal repeat retrotransposon mobilization in plants.
    Brestovitsky A; Iwasaki M; Cho J; Adulyanukosol N; Paszkowski J; Catoni M
    Plant Physiol; 2023 Apr; 191(4):2245-2255. PubMed ID: 36583226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo identification of LTR retrotransposons in eukaryotic genomes.
    Rho M; Choi JH; Kim S; Lynch M; Tang H
    BMC Genomics; 2007 Apr; 8():90. PubMed ID: 17407597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long terminal repeat retrotransposons of Oryza sativa.
    McCarthy EM; Liu J; Lizhi G; McDonald JF
    Genome Biol; 2002 Sep; 3(10):RESEARCH0053. PubMed ID: 12372141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presence of miniature inverted-repeat transposable elements (MITEs) in the genome of Arabidopsis thaliana: characterisation of the Emigrant family of elements.
    Casacuberta E; Casacuberta JM; Puigdomènech P; Monfort A
    Plant J; 1998 Oct; 16(1):79-85. PubMed ID: 9807830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.
    Gao L; McCarthy EM; Ganko EW; McDonald JF
    BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. detectIR: a novel program for detecting perfect and imperfect inverted repeats using complex numbers and vector calculation.
    Ye C; Ji G; Li L; Liang C
    PLoS One; 2014; 9(11):e113349. PubMed ID: 25409465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons.
    Ellinghaus D; Kurtz S; Willhoeft U
    BMC Bioinformatics; 2008 Jan; 9():18. PubMed ID: 18194517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline.
    Ou S; Su W; Liao Y; Chougule K; Agda JRA; Hellinga AJ; Lugo CSB; Elliott TA; Ware D; Peterson T; Jiang N; Hirsch CN; Hufford MB
    Genome Biol; 2019 Dec; 20(1):275. PubMed ID: 31843001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes.
    Casacuberta JM; Santiago N
    Gene; 2003 Jun; 311():1-11. PubMed ID: 12853133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.