These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 31152262)
1. Leveraging heterogeneous data from GHS toxicity annotations, molecular and protein target descriptors and Tox21 assay readouts to predict and rationalise acute toxicity. Allen CHG; Mervin LH; Mahmoud SY; Bender A J Cheminform; 2019 May; 11(1):36. PubMed ID: 31152262 [TBL] [Abstract][Full Text] [Related]
2. Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. Sedykh A; Zhu H; Tang H; Zhang L; Richard A; Rusyn I; Tropsha A Environ Health Perspect; 2011 Mar; 119(3):364-70. PubMed ID: 20980217 [TBL] [Abstract][Full Text] [Related]
3. Prediction of chemical-induced acute toxicity using in vitro assay data and chemical structure. Luo X; Xu T; Ngan DK; Xia M; Zhao J; Sakamuru S; Simeonov A; Huang R Toxicol Appl Pharmacol; 2024 Nov; 492():117098. PubMed ID: 39251042 [TBL] [Abstract][Full Text] [Related]
4. Improving the prediction of organism-level toxicity through integration of chemical, protein target and cytotoxicity qHTS data. Allen CHG; Koutsoukas A; Cortés-Ciriano I; Murrell DS; Malliavin TE; Glen RC; Bender A Toxicol Res (Camb); 2016 May; 5(3):883-894. PubMed ID: 30090397 [TBL] [Abstract][Full Text] [Related]
5. Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure. Liu J; Mansouri K; Judson RS; Martin MT; Hong H; Chen M; Xu X; Thomas RS; Shah I Chem Res Toxicol; 2015 Apr; 28(4):738-51. PubMed ID: 25697799 [TBL] [Abstract][Full Text] [Related]
6. Predictive Models for Human Organ Toxicity Based on Xu T; Ngan DK; Ye L; Xia M; Xie HQ; Zhao B; Simeonov A; Huang R Chem Res Toxicol; 2020 Mar; 33(3):731-741. PubMed ID: 32077278 [TBL] [Abstract][Full Text] [Related]
8. ChemBioSim: Enhancing Conformal Prediction of In Vivo Toxicity by Use of Predicted Bioactivities. Garcia de Lomana M; Morger A; Norinder U; Buesen R; Landsiedel R; Volkamer A; Kirchmair J; Mathea M J Chem Inf Model; 2021 Jul; 61(7):3255-3272. PubMed ID: 34153183 [TBL] [Abstract][Full Text] [Related]
9. Discriminating toxicant classes by mode of action. 1. (Eco)toxicity profiles. Nendza M; Wenzel A Environ Sci Pollut Res Int; 2006 May; 13(3):192-203. PubMed ID: 16758710 [TBL] [Abstract][Full Text] [Related]
10. Tox21 Enricher: Web-based Chemical/Biological Functional Annotation Analysis Tool Based on Tox21 Toxicity Screening Platform. Hur J; Danes L; Hsieh JH; McGregor B; Krout D; Auerbach S Mol Inform; 2018 May; 37(5):e1700129. PubMed ID: 29377626 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Cellular Morphological Descriptors and Molecular Fingerprints for the Prediction of Cytotoxicity- and Proliferation-Related Assays. Seal S; Yang H; Vollmers L; Bender A Chem Res Toxicol; 2021 Feb; 34(2):422-437. PubMed ID: 33522793 [TBL] [Abstract][Full Text] [Related]
12. Identifying Protein Features and Pathways Responsible for Toxicity Using Machine Learning and Tox21: Implications for Predictive Toxicology. Moukheiber L; Mangione W; Moukheiber M; Maleki S; Falls Z; Gao M; Samudrala R Molecules; 2022 May; 27(9):. PubMed ID: 35566372 [TBL] [Abstract][Full Text] [Related]
13. Bioactivity Signatures of Drugs vs. Environmental Chemicals Revealed by Tox21 High-Throughput Screening Assays. Ngan DK; Ye L; Wu L; Xia M; Rossoshek A; Simeonov A; Huang R Front Big Data; 2019; 2():50. PubMed ID: 33693373 [TBL] [Abstract][Full Text] [Related]
14. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods. Zang Q; Rotroff DM; Judson RS J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462 [TBL] [Abstract][Full Text] [Related]
16. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors. Carriger JF; Martin TM; Barron MG Aquat Toxicol; 2016 Nov; 180():11-24. PubMed ID: 27640153 [TBL] [Abstract][Full Text] [Related]
17. Predicting Organ Toxicity Using in Vitro Bioactivity Data and Chemical Structure. Liu J; Patlewicz G; Williams AJ; Thomas RS; Shah I Chem Res Toxicol; 2017 Nov; 30(11):2046-2059. PubMed ID: 28768096 [TBL] [Abstract][Full Text] [Related]
18. Improving the Utility of the Tox21 Dataset by Deep Metadata Annotations and Constructing Reusable Benchmarked Chemical Reference Signatures. Cooper DJ; Schürer S Molecules; 2019 Apr; 24(8):. PubMed ID: 31018579 [TBL] [Abstract][Full Text] [Related]
19. Tox21-Based Comparative Analyses for the Identification of Potential Toxic Effects of Environmental Pollutants. Yang R; Liu S; Yin N; Zhang Y; Faiola F Environ Sci Technol; 2022 Oct; 56(20):14668-14679. PubMed ID: 36178254 [TBL] [Abstract][Full Text] [Related]
20. Predictive Modeling of Estrogen Receptor Binding Agents Using Advanced Cheminformatics Tools and Massive Public Data. Ribay K; Kim MT; Wang W; Pinolini D; Zhu H Front Environ Sci; 2016 Mar; 4():. PubMed ID: 27642585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]