BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 31152400)

  • 1. Fluorogenic Assays for the Defatty-Acylase Activity of Sirtuins.
    Young Hong J; Cao J; Lin H
    Methods Mol Biol; 2019; 2009():129-136. PubMed ID: 31152400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Peptide-Based Sirtuin Defatty-Acylase Inhibitors Identified by the Fluorescence Probe, SFP3, That Can Efficiently Measure Defatty-Acylase Activity of Sirtuin.
    Kawaguchi M; Ieda N; Nakagawa H
    J Med Chem; 2019 Jun; 62(11):5434-5452. PubMed ID: 31117516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH.
    Madsen AS; Andersen C; Daoud M; Anderson KA; Laursen JS; Chakladar S; Huynh FK; Colaço AR; Backos DS; Fristrup P; Hirschey MD; Olsen CA
    J Biol Chem; 2016 Mar; 291(13):7128-41. PubMed ID: 26861872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A FRET-based assay for screening SIRT6 modulators.
    Li Y; You L; Huang W; Liu J; Zhu H; He B
    Eur J Med Chem; 2015; 96():245-9. PubMed ID: 25884115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global Profiling of Sirtuin Deacylase Substrates Using a Chemical Proteomic Strategy and Validation by Fluorescent Labeling.
    Zhang S; Spiegelman NA; Lin H
    Methods Mol Biol; 2019; 2009():137-147. PubMed ID: 31152401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins.
    Feldman JL; Baeza J; Denu JM
    J Biol Chem; 2013 Oct; 288(43):31350-6. PubMed ID: 24052263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved fluorogenic assay for SIRT1, SIRT2, and SIRT3.
    Chiang YL; Lin H
    Org Biomol Chem; 2016 Feb; 14(7):2186-90. PubMed ID: 26796034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying the functional contribution of the defatty-acylase activity of SIRT6.
    Zhang X; Khan S; Jiang H; Antonyak MA; Chen X; Spiegelman NA; Shrimp JH; Cerione RA; Lin H
    Nat Chem Biol; 2016 Aug; 12(8):614-20. PubMed ID: 27322069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Set of Highly Sensitive Sirtuin Fluorescence Probes for Screening Small-Molecular Sirtuin Defatty-Acylase Inhibitors.
    Nakajima Y; Kawaguchi M; Ieda N; Nakagawa H
    ACS Med Chem Lett; 2021 Apr; 12(4):617-624. PubMed ID: 33859801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Small-Molecule SIRT2 Inhibitor That Promotes K-Ras4a Lysine Fatty-Acylation.
    Spiegelman NA; Hong JY; Hu J; Jing H; Wang M; Price IR; Cao J; Yang M; Zhang X; Lin H
    ChemMedChem; 2019 Apr; 14(7):744-748. PubMed ID: 30734528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine.
    Jiang H; Khan S; Wang Y; Charron G; He B; Sebastian C; Du J; Kim R; Ge E; Mostoslavsky R; Hang HC; Hao Q; Lin H
    Nature; 2013 Apr; 496(7443):110-3. PubMed ID: 23552949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LC-MS/MS-based quantitative study of the acyl group- and site-selectivity of human sirtuins to acylated nucleosomes.
    Tanabe K; Liu J; Kato D; Kurumizaka H; Yamatsugu K; Kanai M; Kawashima SA
    Sci Rep; 2018 Feb; 8(1):2656. PubMed ID: 29422688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous Sirtuin/HDAC (histone deacetylase) activity assay using thioamides as PET (Photoinduced Electron Transfer)-based fluorescence quencher.
    Zessin M; Meleshin M; Simic Z; Kalbas D; Arbach M; Gebhardt P; Melesina J; Liebscher S; Bordusa F; Sippl W; Barinka C; Schutkowski M
    Bioorg Chem; 2021 Dec; 117():105425. PubMed ID: 34695733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HPLC-Based Enzyme Assays for Sirtuins.
    Hong JY; Zhang X; Lin H
    Methods Mol Biol; 2018; 1813():225-234. PubMed ID: 30097871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation.
    Feldman JL; Dittenhafer-Reed KE; Kudo N; Thelen JN; Ito A; Yoshida M; Denu JM
    Biochemistry; 2015 May; 54(19):3037-3050. PubMed ID: 25897714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human sirtuins are differentially sensitive to inhibition by nitrosating agents and other cysteine oxidants.
    Kalous KS; Wynia-Smith SL; Summers SB; Smith BC
    J Biol Chem; 2020 Jun; 295(25):8524-8536. PubMed ID: 32371394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying SIRT6 regulation using H3K56 based substrate and small molecules.
    Kokkonen P; Rahnasto-Rilla M; Mellini P; Jarho E; Lahtela-Kakkonen M; Kokkola T
    Eur J Pharm Sci; 2014 Oct; 63():71-6. PubMed ID: 25004411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in characterization of human sirtuin isoforms: chemistries, targets and therapeutic applications.
    Cen Y; Youn DY; Sauve AA
    Curr Med Chem; 2011; 18(13):1919-35. PubMed ID: 21517779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 9-Fluorenylmethoxycarbonyl-labeled peptides as substrates in a capillary electrophoresis-based assay for sirtuin enzymes.
    Fan Y; Ludewig R; Scriba GK
    Anal Biochem; 2009 Apr; 387(2):243-8. PubMed ID: 19454228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide-Based Fluorescent Probes for Deacetylase and Decrotonylase Activity: Toward a General Platform for Real-Time Detection of Lysine Deacylation.
    Rooker DR; Klyubka Y; Gautam R; Tomat E; Buccella D
    Chembiochem; 2018 Mar; 19(5):496-504. PubMed ID: 29235227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.