These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31152487)

  • 1. Hypothermia protects retinal ganglion cells against hypoxia-induced cell death in a retina organ culture model.
    Klemm P; Hurst J; Dias Blak M; Herrmann T; Melchinger M; Bartz-Schmidt KU; Zeck G; Schultheiss M; Spitzer MS; Schnichels S
    Clin Exp Ophthalmol; 2019 Nov; 47(8):1043-1054. PubMed ID: 31152487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclosporine A Protects Retinal Explants against Hypoxia.
    Schnichels S; Schultheiss M; Klemm P; Blak M; Herrmann T; Melchinger M; Bartz-Schmidt KU; Löscher M; Zeck G; Spitzer MS; Hurst J
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TRPC6 channel protects retinal ganglion cells in a rat model of retinal ischemia/reperfusion-induced cell death.
    Wang X; Teng L; Li A; Ge J; Laties AM; Zhang X
    Invest Ophthalmol Vis Sci; 2010 Nov; 51(11):5751-8. PubMed ID: 20554625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a conventional photocoagulator and a 3-ns pulse laser on preconditioning responses and retinal ganglion cell survival after optic nerve crush.
    Shibeeb O; Wood JP; Casson RJ; Chidlow G
    Exp Eye Res; 2014 Oct; 127():77-90. PubMed ID: 25057781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and cellular reactions of retinal ganglion cells and retinal glial cells under centrifugal force loading.
    Kashiwagi K; Iizuka Y; Tanaka Y; Araie M; Suzuki Y; Tsukahara S
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3778-86. PubMed ID: 15452089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mouse retinal explant model for use in studying neuroprotection in glaucoma.
    Pattamatta U; McPherson Z; White A
    Exp Eye Res; 2016 Oct; 151():38-44. PubMed ID: 27450912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress-induced retinal damage is prevented by mild hypothermia in an ex vivo model of cultivated porcine retinas.
    Mueller-Buehl AM; Doepper H; Grauthoff S; Kiebler T; Peters L; Hurst J; Kuehn S; Bartz-Schmidt KU; Dick HB; Joachim SC; Schnichels S
    Clin Exp Ophthalmol; 2020 Jul; 48(5):666-681. PubMed ID: 32077190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degenerative effects of cobalt-chloride treatment on neurons and microglia in a porcine retina organ culture model.
    Kuehn S; Hurst J; Rensinghoff F; Tsai T; Grauthoff S; Satgunarajah Y; Dick HB; Schnichels S; Joachim SC
    Exp Eye Res; 2017 Feb; 155():107-120. PubMed ID: 28089775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroprotective effect of melatonin against hypoxia-induced retinal ganglion cell death in neonatal rats.
    Kaur C; Sivakumar V; Robinson R; Foulds WS; Luu CD; Ling EA
    J Pineal Res; 2013 Mar; 54(2):190-206. PubMed ID: 23113620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NF-κB-mediated nitric oxide production and activation of caspase-3 cause retinal ganglion cell death in the hypoxic neonatal retina.
    Rathnasamy G; Sivakumar V; Rangarajan P; Foulds WS; Ling EA; Kaur C
    Invest Ophthalmol Vis Sci; 2014 Aug; 55(9):5878-89. PubMed ID: 25139733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo neuroprotective effects of cJun N-terminal kinase inhibitors on retinal ganglion cells.
    Kim BJ; Silverman SM; Liu Y; Wordinger RJ; Pang IH; Clark AF
    Mol Neurodegener; 2016 Apr; 11():30. PubMed ID: 27098079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of liver X receptor protects inner retinal damage induced by N-methyl-D-aspartate.
    Zheng S; Yang H; Chen Z; Zheng C; Lei C; Lei B
    Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):1168-80. PubMed ID: 25613943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced survival of retinal ganglion cells is mediated by Müller glial cell-derived PEDF.
    Unterlauft JD; Claudepierre T; Schmidt M; Müller K; Yafai Y; Wiedemann P; Reichenbach A; Eichler W
    Exp Eye Res; 2014 Oct; 127():206-14. PubMed ID: 25128578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of lysophosphatidic acid receptor (LPA1) in the oxygen-induced retinal ganglion cell degeneration.
    Yang C; Lafleur J; Mwaikambo BR; Zhu T; Gagnon C; Chemtob S; Di Polo A; Hardy P
    Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1290-8. PubMed ID: 18978343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroprotective effects of inhibitors of Acid-Sensing ion channels (ASICs) in optic nerve crush model in rodents.
    Stankowska DL; Mueller BH; Oku H; Ikeda T; Dibas A
    Curr Eye Res; 2018 Jan; 43(1):84-95. PubMed ID: 29111855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia-induced activation of N-methyl-D-aspartate receptors causes retinal ganglion cell death in the neonatal retina.
    Kaur C; Sivakumar V; Foulds WS; Luu CD; Ling EA
    J Neuropathol Exp Neurol; 2012 Apr; 71(4):330-47. PubMed ID: 22437343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multielectrode array-based hypoxia model for the analysis of electrical activity in murine retinae.
    Ingensiep C; Schaffrath K; Denecke B; Walter P; Johnen S
    J Neurosci Res; 2021 Sep; 99(9):2172-2187. PubMed ID: 34110645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neuroprotective effect of carnosine (β-alanyl-L-histidine) on retinal ganglion cell following ischemia-reperfusion injury.
    Ji YS; Park JW; Heo H; Park JS; Park SW
    Curr Eye Res; 2014 Jun; 39(6):634-41. PubMed ID: 24206188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Wnt signaling pathway protects retinal ganglion cell 5 (RGC-5) cells from elevated pressure.
    Fragoso MA; Yi H; Nakamura RE; Hackam AS
    Cell Mol Neurobiol; 2011 Jan; 31(1):163-73. PubMed ID: 21061158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia-induced retinal ganglion cell death and the neuroprotective effects of beta-adrenergic antagonists.
    Chen YN; Yamada H; Mao W; Matsuyama S; Aihara M; Araie M
    Brain Res; 2007 May; 1148():28-37. PubMed ID: 17368577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.