These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 3115259)

  • 1. In vitro methane and methyl coenzyme M formation from acetate: evidence that acetyl-CoA is the required intermediate activated form of acetate.
    Grahame DA; Stadtman TC
    Biochem Biophys Res Commun; 1987 Aug; 147(1):254-8. PubMed ID: 3115259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of methyl coenzyme M as an intermediate in methanogenesis from acetate in Methanosarcina spp.
    Lovley DR; White RH; Ferry JG
    J Bacteriol; 1984 Nov; 160(2):521-5. PubMed ID: 6438056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methyl-coenzyme M, an intermediate in methanogenic dissimilation of C1 compounds by Methanosarcina barkeri.
    Shapiro S; Wolfe RS
    J Bacteriol; 1980 Feb; 141(2):728-34. PubMed ID: 6444945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetate catabolism by Methanosarcina barkeri: evidence for involvement of carbon monoxide dehydrogenase, methyl coenzyme M, and methylreductase.
    Krzycki JA; Lehman LJ; Zeikus JG
    J Bacteriol; 1985 Sep; 163(3):1000-6. PubMed ID: 3928595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coenzyme M derivatives and their effects on methane formation from carbon dioxide and methanol by cell extracts of Methanosarcina barkeri.
    Hutten TJ; De Jong MH; Peeters BP; van der Drift C; Vogels GD
    J Bacteriol; 1981 Jan; 145(1):27-34. PubMed ID: 6780512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS).
    Fischer R; Thauer RK
    FEBS Lett; 1990 Sep; 269(2):368-72. PubMed ID: 15452975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Levels of coenzyme F420, coenzyme M, hydrogenase, and methylcoenzyme M methylreductase in acetate-grown Methanosarcina.
    Baresi L; Wolfe RS
    Appl Environ Microbiol; 1981 Feb; 41(2):388-91. PubMed ID: 6786217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of coenzyme M and formaldehyde in methanogenesis.
    Romesser JA; Wolfe RS
    Biochem J; 1981 Sep; 197(3):565-71. PubMed ID: 6798970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol.
    Smith MR; Mah RA
    Appl Environ Microbiol; 1978 Dec; 36(6):870-9. PubMed ID: 216307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the role of N-7-mercaptoheptanoyl-O-phospho-L-threonine (component B) in the enzymatic reduction of methyl-coenzyme M to methane.
    Ellermann J; Kobelt A; Pfaltz A; Thauer RK
    FEBS Lett; 1987 Aug; 220(2):358-62. PubMed ID: 3111890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane formation from methyl-coenzyme M in a system containing methyl-coenzyme M reductase, component B and reduced cobalamin.
    Ankel-Fuchs D; Thauer RK
    Eur J Biochem; 1986 Apr; 156(1):171-7. PubMed ID: 3082633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methane from acetate.
    Ferry JG
    J Bacteriol; 1992 Sep; 174(17):5489-95. PubMed ID: 1512186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP synthesis coupled to methane formation from methyl-CoM and H2 catalyzed by vesicles of the methanogenic bacterial strain Gö1.
    Peinemann S; Blaut M; Gottschalk G
    Eur J Biochem; 1989 Dec; 186(1-2):175-80. PubMed ID: 2557206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methanosarcina mutant unable to produce methane or assimilate carbon from acetate.
    Smith MR; Lequerica JL
    J Bacteriol; 1985 Nov; 164(2):618-25. PubMed ID: 3840474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of coenzyme M analogues and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum.
    Gunsalus RP; Romesser JA; Wolfe RS
    Biochemistry; 1978 Jun; 17(12):2374-7. PubMed ID: 98178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of tetrahydromethanopterin and cytoplasmic cofactor in methane synthesis.
    Sauer FD; Blackwell BA; Mahadevan S
    Biochem J; 1986 Apr; 235(2):453-8. PubMed ID: 3091008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium.
    Bobik TA; Wolfe RS
    Proc Natl Acad Sci U S A; 1988 Jan; 85(1):60-3. PubMed ID: 3124103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetate-dependent methylation of two corrinoid proteins in extracts of Methanosarcina barkeri.
    Cao XJ; Krzycki JA
    J Bacteriol; 1991 Sep; 173(17):5439-48. PubMed ID: 1885523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate is a product of the methylreductase reaction in Methanobacterium.
    Bobik TA; Olson KD; Noll KM; Wolfe RS
    Biochem Biophys Res Commun; 1987 Dec; 149(2):455-60. PubMed ID: 3122735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of methyl coenzyme M reduction with carbon dioxide activation in extracts of Methanobacterium thermoautotrophicum.
    Romesser JA; Wolfe RS
    J Bacteriol; 1982 Nov; 152(2):840-7. PubMed ID: 6813316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.