These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 31152702)
1. Pharmacological characterizations of the 'legal high' fluorolintane and isomers. Wallach J; Colestock T; Agramunt J; Claydon MDB; Dybek M; Filemban N; Chatha M; Halberstadt AL; Brandt SD; Lodge D; Bortolotto ZA; Adejare A Eur J Pharmacol; 2019 Aug; 857():172427. PubMed ID: 31152702 [TBL] [Abstract][Full Text] [Related]
2. Pharmacological Investigations of the Dissociative 'Legal Highs' Diphenidine, Methoxphenidine and Analogues. Wallach J; Kang H; Colestock T; Morris H; Bortolotto ZA; Collingridge GL; Lodge D; Halberstadt AL; Brandt SD; Adejare A PLoS One; 2016; 11(6):e0157021. PubMed ID: 27314670 [TBL] [Abstract][Full Text] [Related]
3. Ephenidine: A new psychoactive agent with ketamine-like NMDA receptor antagonist properties. Kang H; Park P; Bortolotto ZA; Brandt SD; Colestock T; Wallach J; Collingridge GL; Lodge D Neuropharmacology; 2017 Jan; 112(Pt A):144-149. PubMed ID: 27520396 [TBL] [Abstract][Full Text] [Related]
4. Preparation and characterization of the 'research chemical' diphenidine, its pyrrolidine analogue, and their 2,2-diphenylethyl isomers. Wallach J; Kavanagh PV; McLaughlin G; Morris N; Power JD; Elliott SP; Mercier MS; Lodge D; Morris H; Dempster NM; Brandt SD Drug Test Anal; 2015 May; 7(5):358-67. PubMed ID: 25044512 [TBL] [Abstract][Full Text] [Related]
5. Syntheses and analytical characterizations of the research chemical 1-[1-(2-fluorophenyl)-2-phenylethyl]pyrrolidine (fluorolintane) and five of its isomers. Dybek M; Wallach J; Kavanagh PV; Colestock T; Filemban N; Dowling G; Westphal F; Elliott SP; Adejare A; Brandt SD Drug Test Anal; 2019 Aug; 11(8):1144-1161. PubMed ID: 31033229 [TBL] [Abstract][Full Text] [Related]
6. Syntheses, analytical and pharmacological characterizations of the 'legal high' 4-[1-(3-methoxyphenyl)cyclohexyl]morpholine (3-MeO-PCMo) and analogues. Colestock T; Wallach J; Mansi M; Filemban N; Morris H; Elliott SP; Westphal F; Brandt SD; Adejare A Drug Test Anal; 2018 Feb; 10(2):272-283. PubMed ID: 28513099 [TBL] [Abstract][Full Text] [Related]
8. Steroid pregnenolone sulfate enhances NMDA-receptor-independent long-term potentiation at hippocampal CA1 synapses: role for L-type calcium channels and sigma-receptors. Sabeti J; Nelson TE; Purdy RH; Gruol DL Hippocampus; 2007; 17(5):349-69. PubMed ID: 17330865 [TBL] [Abstract][Full Text] [Related]
9. An extension of hypotheses regarding rapid-acting, treatment-refractory, and conventional antidepressant activity of dextromethorphan and dextrorphan. Lauterbach EC Med Hypotheses; 2012 Jun; 78(6):693-702. PubMed ID: 22401777 [TBL] [Abstract][Full Text] [Related]
10. Evidence for involvement of group II/III metabotropic glutamate receptors in NMDA receptor-independent long-term potentiation in area CA1 of rat hippocampus. Grover LM; Yan C J Neurophysiol; 1999 Dec; 82(6):2956-69. PubMed ID: 10601432 [TBL] [Abstract][Full Text] [Related]
12. Selective subunit antagonists suggest an inhibitory relationship between NR2B and NR2A-subunit containing N-methyl-D: -aspartate receptors in hippocampal slices. Mallon AP; Auberson YP; Stone TW Exp Brain Res; 2005 Apr; 162(3):374-83. PubMed ID: 15580338 [TBL] [Abstract][Full Text] [Related]
13. Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synaptotoxic effects of β-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices. Rammes G; Hasenjäger A; Sroka-Saidi K; Deussing JM; Parsons CG Neuropharmacology; 2011 May; 60(6):982-90. PubMed ID: 21310164 [TBL] [Abstract][Full Text] [Related]
14. N-methyl-D-aspartate receptor antagonists are less effective in blocking long-term potentiation at apical than basal dendrites in hippocampal CA1 of awake rats. Leung LS; Shen B Hippocampus; 1999; 9(6):617-30. PubMed ID: 10641754 [TBL] [Abstract][Full Text] [Related]
15. Xenon attenuates hippocampal long-term potentiation by diminishing synaptic and extrasynaptic N-methyl-D-aspartate receptor currents. Kratzer S; Mattusch C; Kochs E; Eder M; Haseneder R; Rammes G Anesthesiology; 2012 Mar; 116(3):673-82. PubMed ID: 22293720 [TBL] [Abstract][Full Text] [Related]
16. The complementary nature of long-term depression and potentiation revealed by dual component excitatory postsynaptic potentials in hippocampal slices from young rats. Xiao MY; Karpefors M; Niu YP; Wigström H Neuroscience; 1995 Oct; 68(3):625-35. PubMed ID: 8577363 [TBL] [Abstract][Full Text] [Related]
17. Activation of NMDA receptors is necessary for the induction of associative long-term potentiation in area CA1 of the rat hippocampal slice. Murphy KP; Reid GP; Trentham DR; Bliss TV J Physiol; 1997 Oct; 504 ( Pt 2)(Pt 2):379-85. PubMed ID: 9365912 [TBL] [Abstract][Full Text] [Related]
18. The pro-inflammatory cytokine interleukin-18 impairs long-term potentiation and NMDA receptor-mediated transmission in the rat hippocampus in vitro. Curran B; O'Connor JJ Neuroscience; 2001; 108(1):83-90. PubMed ID: 11738133 [TBL] [Abstract][Full Text] [Related]
19. Interactions of glutamate receptor agonists with long-term potentiation in the rat hippocampal slice. Youssef F; Stone TW; Addae JI Eur J Pharmacol; 2000 Jun; 398(3):349-59. PubMed ID: 10862824 [TBL] [Abstract][Full Text] [Related]
20. Pregnenolone sulfate enhances long-term potentiation in CA1 in rat hippocampus slices through the modulation of N-methyl-D-aspartate receptors. Sliwinski A; Monnet FP; Schumacher M; Morin-Surun MP J Neurosci Res; 2004 Dec; 78(5):691-701. PubMed ID: 15505794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]