These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 31152834)
1. Comparative study of cellulose and lignocellulose nanopapers prepared from hard wood pulps: Morphological, structural and barrier properties. Djafari Petroudy SR; Rahmani N; Rasooly Garmaroody E; Rudi H; Ramezani O Int J Biol Macromol; 2019 Aug; 135():512-520. PubMed ID: 31152834 [TBL] [Abstract][Full Text] [Related]
2. Differences in residual lignin properties between Betula verrucosa and Eucalyptus urograndis kraft pulps. Hänninen TA; Kontturi E; Isogai A; Vuorinen T Biopolymers; 2008 Oct; 89(10):889-93. PubMed ID: 18488987 [TBL] [Abstract][Full Text] [Related]
3. Lignin containing micro and nano-fibrillated cellulose obtained by steam explosion: Comparative study between different processes. Nader S; Brosse N; Daas T; Mauret E Carbohydr Polym; 2022 Aug; 290():119460. PubMed ID: 35550762 [TBL] [Abstract][Full Text] [Related]
4. Lignin and Xylan as Interface Engineering Additives for Improved Environmental Durability of Sustainable Cellulose Nanopapers. Beluns S; Platnieks O; Gaidukovs S; Starkova O; Sabalina A; Grase L; Thakur VK; Gaidukova G Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884744 [TBL] [Abstract][Full Text] [Related]
5. Dissolution of Wood Pulp in Aqueous NaOH/Urea Solution via Dilute Acid Pretreatment. Shi Z; Yang Q; Kuga S; Matsumoto Y J Agric Food Chem; 2015 Jul; 63(27):6113-9. PubMed ID: 26101792 [TBL] [Abstract][Full Text] [Related]
6. Self-Fibrillating Cellulose Fibers: Rapid In Situ Nanofibrillation to Prepare Strong, Transparent, and Gas Barrier Nanopapers. Gorur YC; Larsson PA; Wågberg L Biomacromolecules; 2020 Apr; 21(4):1480-1488. PubMed ID: 32167304 [TBL] [Abstract][Full Text] [Related]
7. Characterization of fungal-degraded lime wood by X-ray diffraction and cross-polarization magic-angle-spinning 13C-nuclear magnetic resonance spectroscopy. Popescu CM; Larsson PT; Tibirna CM; Vasile C Appl Spectrosc; 2010 Sep; 64(9):1054-60. PubMed ID: 20828443 [TBL] [Abstract][Full Text] [Related]
8. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Mtibe A; Linganiso LZ; Mathew AP; Oksman K; John MJ; Anandjiwala RD Carbohydr Polym; 2015 Mar; 118():1-8. PubMed ID: 25542099 [TBL] [Abstract][Full Text] [Related]
9. The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Spence KL; Venditti RA; Habibi Y; Rojas OJ; Pawlak JJ Bioresour Technol; 2010 Aug; 101(15):5961-8. PubMed ID: 20335025 [TBL] [Abstract][Full Text] [Related]
10. Characterization and evaluation of golpata fronds as pulping raw materials. Jahan MS; Chowdhury DA; Islam MK Bioresour Technol; 2006 Feb; 97(3):401-6. PubMed ID: 15927462 [TBL] [Abstract][Full Text] [Related]
11. Cellulose nanopaper structures of high toughness. Henriksson M; Berglund LA; Isaksson P; Lindström T; Nishino T Biomacromolecules; 2008 Jun; 9(6):1579-85. PubMed ID: 18498189 [TBL] [Abstract][Full Text] [Related]
12. Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Ferrer A; Filpponen I; Rodríguez A; Laine J; Rojas OJ Bioresour Technol; 2012 Dec; 125():249-55. PubMed ID: 23026341 [TBL] [Abstract][Full Text] [Related]
13. The effect of xylanase on lignocellulosic components during the bleaching of wood pulps. Roncero MB; Torres AL; Colom JF; Vidal T Bioresour Technol; 2005 Jan; 96(1):21-30. PubMed ID: 15364076 [TBL] [Abstract][Full Text] [Related]
14. Solid-state properties of softwood lignin and cellulose isolated by a new acid precipitation method. Penkina A; Hakola M; Paaver U; Vuorinen S; Kirsimäe K; Kogermann K; Veski P; Yliruusi J; Repo T; Heinämäki J Int J Biol Macromol; 2012 Dec; 51(5):939-45. PubMed ID: 22846687 [TBL] [Abstract][Full Text] [Related]
15. Disassociated molecular orientation distributions of a composite cellulose-lignin carbon fiber precursor: A study by rotor synchronized NMR spectroscopy and X-ray scattering. Svenningsson L; Bengtsson J; Jedvert K; Schlemmer W; Theliander H; Evenäs L Carbohydr Polym; 2021 Feb; 254():117293. PubMed ID: 33357862 [TBL] [Abstract][Full Text] [Related]
16. Assessment of Bleached and Unbleached Nanofibers from Pistachio Shells for Nanopaper Making. Robles E; Izaguirre N; Martin A; Moschou D; Labidi J Molecules; 2021 Mar; 26(5):. PubMed ID: 33806557 [TBL] [Abstract][Full Text] [Related]
17. Improving the degree of polymerization of cellulose nanofibers by largely preserving native structure of wood fibers. Zhou J; Fang Z; Chen K; Cui J; Yang D; Qiu X Carbohydr Polym; 2022 Nov; 296():119919. PubMed ID: 36087974 [TBL] [Abstract][Full Text] [Related]
18. Chemical characteristics and enzymatic saccharification of lignocellulosic biomass treated using high-temperature saturated steam: comparison of softwood and hardwood. Asada C; Sasaki C; Hirano T; Nakamura Y Bioresour Technol; 2015 Apr; 182():245-250. PubMed ID: 25704097 [TBL] [Abstract][Full Text] [Related]
19. The influence of lignin on steam pretreatment and mechanical pulping of poplar to achieve high sugar recovery and ease of enzymatic hydrolysis. Chandra RP; Chu Q; Hu J; Zhong N; Lin M; Lee JS; Saddler J Bioresour Technol; 2016 Jan; 199():135-141. PubMed ID: 26391968 [TBL] [Abstract][Full Text] [Related]
20. Preparation of Cellulose Nanofibrils from Bamboo Pulp by Mechanical Defibrillation for Their Applications in Biodegradable Composites. Guimarães M; Botaro VR; Novack KM; Neto WP; Mendes LM; Tonoli GH J Nanosci Nanotechnol; 2015 Sep; 15(9):6751-68. PubMed ID: 26716240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]