These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31152952)

  • 1. Bioleaching of copper sulfide minerals assisted by microbial fuel cells.
    Huang T; Wei X; Zhang S
    Bioresour Technol; 2019 Sep; 288():121561. PubMed ID: 31152952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper extraction from low-grade chalcopyrite in a bioleaching column assisted by bioelectrochemical system.
    Zhang X; Zhang S; Huang T; Jin Z
    Environ Sci Pollut Res Int; 2022 May; 29(23):35459-35470. PubMed ID: 35050470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of microbial community to pH stress in bioleaching of low grade copper sulfide.
    Wang Y; Li K; Chen X; Zhou H
    Bioresour Technol; 2018 Feb; 249():146-153. PubMed ID: 29040848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of bioleaching of a sulfidic copper ore (chalcopyrite) in column percolators and in stirred-tank bioreactors including microbial community analysis.
    Bakhti A; Moghimi H; Bozorg A; Stankovic S; Manafi Z; Schippers A
    Chemosphere; 2024 Feb; 349():140945. PubMed ID: 38104736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical Applications in Metal Bioleaching.
    Tanne CK; Schippers A
    Adv Biochem Eng Biotechnol; 2019; 167():327-359. PubMed ID: 29224081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation.
    Tao H; Dongwei L
    Biotechnol Rep (Amst); 2014 Dec; 4():107-119. PubMed ID: 28626669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial fuel cells for sulfide removal.
    Rabaey K; Van de Sompel K; Maignien L; Boon N; Aelterman P; Clauwaert P; De Schamphelaire L; Pham HT; Vermeulen J; Verhaege M; Lens P; Verstraete W
    Environ Sci Technol; 2006 Sep; 40(17):5218-24. PubMed ID: 16999092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous sulfide removal, nitrification, and electricity generation in a microbial fuel cell equipped with an oxic cathode.
    Bao R; Zhang S; Zhao L; Zhong L
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5326-5334. PubMed ID: 28013461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of bioleaching: iron and sulfur oxidation by acidophilic microorganisms.
    Jones S; Santini JM
    Essays Biochem; 2023 Aug; 67(4):685-699. PubMed ID: 37449416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disentangling effects of temperature on microbial community and copper extraction in column bioleaching of low grade copper sulfide.
    Wang Y; Chen X; Zhou H
    Bioresour Technol; 2018 Nov; 268():480-487. PubMed ID: 30114667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell.
    Sun M; Mu ZX; Chen YP; Sheng GP; Liu XW; Chen YZ; Zhao Y; Wang HL; Yu HQ; Wei L; Ma F
    Environ Sci Technol; 2009 May; 43(9):3372-7. PubMed ID: 19534160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell.
    Sun M; Tong ZH; Sheng GP; Chen YZ; Zhang F; Mu ZX; Wang HL; Zeng RJ; Liu XW; Yu HQ; Wei L; Ma F
    Biosens Bioelectron; 2010 Oct; 26(2):470-6. PubMed ID: 20692154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased chalcopyrite bioleaching capabilities of extremely thermoacidophilic Metallosphaera sedula inocula by mixotrophic propagation.
    Ai C; Yan Z; Chai H; Gu T; Wang J; Chai L; Qiu G; Zeng W
    J Ind Microbiol Biotechnol; 2019 Aug; 46(8):1113-1127. PubMed ID: 31165968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A triple-chamber microbial fuel cell enabled to synchronously recover iron and sulfur elements from sulfide tailings.
    Zheng Y; Wang L; Zhu Y; Li X; Ren Y
    J Hazard Mater; 2021 Jan; 401():123307. PubMed ID: 32653783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans.
    Zhao H; Wang J; Hu M; Qin W; Zhang Y; Qiu G
    Bioresour Technol; 2013 Dec; 149():71-6. PubMed ID: 24084207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intensified bioleaching of chalcopyrite concentrate using adapted mesophilic culture in continuous stirred tank reactors.
    You J; Solongo SK; Gomez-Flores A; Choi S; Zhao H; Urík M; Ilyas S; Kim H
    Bioresour Technol; 2020 Jul; 307():123181. PubMed ID: 32213446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between bioleaching performance, bacterial community structure and mineralogy in the bioleaching of a copper concentrate in stirred-tank reactors.
    Spolaore P; Joulian C; Gouin J; Morin D; d'Hugues P
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):441-8. PubMed ID: 20890755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Stage Oxidative Leaching of Low-Grade Copper-Zinc Sulfide Concentrate.
    Bulaev A; Melamud V
    Microorganisms; 2022 Sep; 10(9):. PubMed ID: 36144382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfobacillus thermosulfidooxidans strain Cutipay enhances chalcopyrite bioleaching under moderate thermophilic conditions in the presence of chloride ion.
    Bobadilla-Fazzini RA; Cortés MP; Maass A; Parada P
    AMB Express; 2014 Dec; 4(1):84. PubMed ID: 26267113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of microbial community to geochemical parameters on vertical depth in bioheap system of low-grade copper sulfide.
    Li XT; Huang ZS; Huang Y; Jiang Z; Liang ZL; Yin HQ; Zhang GJ; Jia Y; Deng Y; Liu SJ; Jiang CY
    Sci Total Environ; 2023 Apr; 869():161752. PubMed ID: 36690115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.