These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 31153022)
1. Effect of interfacial serum proteins on the cell membrane disruption induced by amorphous silica nanoparticles in erythrocytes, lymphocytes, malignant melanocytes, and macrophages. Shinto H; Fukasawa T; Yoshisue K; Tsukamoto N; Aso S; Hirohashi Y; Seto H Colloids Surf B Biointerfaces; 2019 Sep; 181():270-277. PubMed ID: 31153022 [TBL] [Abstract][Full Text] [Related]
2. Role of bovine serum albumin and humic acid in the interaction between SiO Wei X; Qu X; Ding L; Hu J; Jiang W Environ Pollut; 2016 Dec; 219():1-8. PubMed ID: 27661722 [TBL] [Abstract][Full Text] [Related]
3. Variations of the corona HDL:albumin ratio determine distinct effects of amorphous SiO2 nanoparticles on monocytes and macrophages in serum. Fedeli C; Segat D; Tavano R; De Franceschi G; de Laureto PP; Lubian E; Selvestrel F; Mancin F; Papini E Nanomedicine (Lond); 2014 Nov; 9(16):2481-97. PubMed ID: 24661258 [TBL] [Abstract][Full Text] [Related]
4. Measuring the Surface-Surface Interactions Induced by Serum Proteins in a Physiological Environment. Wang Z; He C; Gong X; Wang J; Ngai T Langmuir; 2016 Nov; 32(46):12129-12136. PubMed ID: 27794620 [TBL] [Abstract][Full Text] [Related]
5. Effect of particle functionalization and solution properties on the adsorption of bovine serum albumin and lysozyme onto silica nanoparticles. Galdino FE; Picco AS; Sforca ML; Cardoso MB; Loh W Colloids Surf B Biointerfaces; 2020 Feb; 186():110677. PubMed ID: 31812075 [TBL] [Abstract][Full Text] [Related]
6. A Comparative Analysis of Different Grades of Silica Particles and Temperature Variants of Food-Grade Silica Nanoparticles for Their Physicochemical Properties and Effect on Trypsin. Phue WH; Liu M; Xu K; Srinivasan D; Ismail A; George S J Agric Food Chem; 2019 Nov; 67(44):12264-12272. PubMed ID: 31613615 [TBL] [Abstract][Full Text] [Related]
7. Effect of lipid coating on the interaction between silica nanoparticles and membranes. Tada DB; Suraniti E; Rossi LM; Leite CA; Oliveira CS; Tumolo TC; Calemczuk R; Livache T; Baptista MS J Biomed Nanotechnol; 2014 Mar; 10(3):519-28. PubMed ID: 24730247 [TBL] [Abstract][Full Text] [Related]
8. The effect of salts in aqueous media on the formation of the BSA corona on SiO Givens BE; Wilson E; Fiegel J Colloids Surf B Biointerfaces; 2019 Jul; 179():374-381. PubMed ID: 30999116 [TBL] [Abstract][Full Text] [Related]
9. Loss of membrane asymmetry alters the interactions of erythrocytes with engineered silica nanoparticles. Bigdelou P; Vahedi A; Kiosidou E; Farnoud AM Biointerphases; 2020 Jun; 15(4):041001. PubMed ID: 32600052 [TBL] [Abstract][Full Text] [Related]
10. Modulation of serum albumin protein corona for exploring cellular behaviors of fattigation-platform nanoparticles. Nguyen VH; Meghani NM; Amin HH; Tran TTD; Tran PHL; Park C; Lee BJ Colloids Surf B Biointerfaces; 2018 Oct; 170():179-186. PubMed ID: 29906703 [TBL] [Abstract][Full Text] [Related]
11. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. Lin YS; Haynes CL J Am Chem Soc; 2010 Apr; 132(13):4834-42. PubMed ID: 20230032 [TBL] [Abstract][Full Text] [Related]
13. Zwitterion Functionalized Silica Nanoparticle Coatings: The Effect of Particle Size on Protein, Bacteria, and Fungal Spore Adhesion. Knowles BR; Yang D; Wagner P; Maclaughlin S; Higgins MJ; Molino PJ Langmuir; 2019 Feb; 35(5):1335-1345. PubMed ID: 30086644 [TBL] [Abstract][Full Text] [Related]
14. Impact of polymer shell on the formation and time evolution of nanoparticle-protein corona. Natte K; Friedrich JF; Wohlrab S; Lutzki J; von Klitzing R; Österle W; Orts-Gil G Colloids Surf B Biointerfaces; 2013 Apr; 104():213-20. PubMed ID: 23318220 [TBL] [Abstract][Full Text] [Related]
15. Silica nanoparticles increase human adipose tissue-derived stem cell proliferation through ERK1/2 activation. Kim KJ; Joe YA; Kim MK; Lee SJ; Ryu YH; Cho DW; Rhie JW Int J Nanomedicine; 2015; 10():2261-72. PubMed ID: 25848249 [TBL] [Abstract][Full Text] [Related]
16. Protein Adsorption From Biofluids on Silica Nanoparticles: Corona Analysis as a Function of Particle Diameter and Porosity. Clemments AM; Botella P; Landry CC ACS Appl Mater Interfaces; 2015 Oct; 7(39):21682-9. PubMed ID: 26371804 [TBL] [Abstract][Full Text] [Related]
18. Influence of bovine serum albumin pre-incubation on toxicity and ER stress-apoptosis gene expression in THP-1 macrophages exposed to ZnO nanoparticles. Liang H; He T; Long J; Liu L; Liao G; Ding Y; Cao Y Toxicol Mech Methods; 2018 Oct; 28(8):587-598. PubMed ID: 29783874 [TBL] [Abstract][Full Text] [Related]
19. Biological effects induced by BSA-stabilized silica nanoparticles in mammalian cell lines. Foldbjerg R; Wang J; Beer C; Thorsen K; Sutherland DS; Autrup H Chem Biol Interact; 2013 Jun; 204(1):28-38. PubMed ID: 23623845 [TBL] [Abstract][Full Text] [Related]
20. Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles. Liang S; Kang Y; Tiraferri A; Giannelis EP; Huang X; Elimelech M ACS Appl Mater Interfaces; 2013 Jul; 5(14):6694-703. PubMed ID: 23796125 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]