These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31153041)

  • 1. Molybdenum Nitride Nanocrystals Anchored on Phosphorus-Incorporated Carbon Fabric as a Negative Electrode for High-Performance Asymmetric Pseudocapacitor.
    Dubal DP; Abdel-Azeim S; Chodankar NR; Han YK
    iScience; 2019 Jun; 16():50-62. PubMed ID: 31153041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tungsten Nitride Nanodots Embedded Phosphorous Modified Carbon Fabric as Flexible and Robust Electrode for Asymmetric Pseudocapacitor.
    Dubal DP; Chodankar NR; Qiao S
    Small; 2019 Jan; 15(1):e1804104. PubMed ID: 30609283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Dimensional Materials for High-Energy Solid-State Asymmetric Pseudocapacitors with High Mass Loadings.
    Chodankar NR; Patil SJ; Rama Raju GS; Lee DW; Dubal DP; Huh YS; Han YK
    ChemSusChem; 2020 Mar; 13(6):1582-1592. PubMed ID: 31654465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric Pseudocapacitors Based on Interfacial Engineering of Vanadium Nitride Hybrids.
    Su H; Xiong T; Tan Q; Yang F; Appadurai PBS; Afuwape AA; Balogun MJT; Huang Y; Guo K
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32531987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraordinary pseudocapacitive energy storage triggered by phase transformation in hierarchical vanadium oxides.
    Liu BT; Shi XM; Lang XY; Gu L; Wen Z; Zhao M; Jiang Q
    Nat Commun; 2018 Apr; 9(1):1375. PubMed ID: 29636459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbons and electrolytes for advanced supercapacitors.
    Béguin F; Presser V; Balducci A; Frackowiak E
    Adv Mater; 2014 Apr; 26(14):2219-51, 2283. PubMed ID: 24497347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Li-Ion Affinity of Molybdenum Dioxide/Carbon Fabric to Achieve High Pseudocapacitance.
    Liu Q; Zhang H; Yang F; Geng H; Liu X; Yu Y; Lu X
    Small; 2021 Nov; 17(46):e2104178. PubMed ID: 34636139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical One-Dimensional Ammonium Nickel Phosphate Microrods for High-Performance Pseudocapacitors.
    Raju K; Ozoemena KI
    Sci Rep; 2015 Dec; 5():17629. PubMed ID: 26631578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the pseudocapacitance of RuO2 from joint density functional theory.
    Zhan C; Jiang DE
    J Phys Condens Matter; 2016 Nov; 28(46):464004. PubMed ID: 27624301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors.
    Wang F; Zhan X; Cheng Z; Wang Z; Wang Q; Xu K; Safdar M; He J
    Small; 2015 Feb; 11(6):749-55. PubMed ID: 25273957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MXene as a Charge Storage Host.
    Okubo M; Sugahara A; Kajiyama S; Yamada A
    Acc Chem Res; 2018 Mar; 51(3):591-599. PubMed ID: 29469564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-Mediator-Enhanced Electrochemical Capacitors: Recent Advances and Future Perspectives.
    Hu L; Zhai T; Li H; Wang Y
    ChemSusChem; 2019 Mar; 12(6):1118-1132. PubMed ID: 30427120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel electrode geometry for high performance CF/Fe
    Kumar S; Telpande S; Manikandan V; Kumar P; Misra A
    Nanoscale; 2020 Oct; 12(37):19438-19449. PubMed ID: 32959860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. YbCl₃ electrode in alkaline aqueous electrolyte with high pseudocapacitance.
    Chen K; Xue D
    J Colloid Interface Sci; 2014 Jun; 424():84-9. PubMed ID: 24767502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors.
    Chodankar NR; Pham HD; Nanjundan AK; Fernando JFS; Jayaramulu K; Golberg D; Han YK; Dubal DP
    Small; 2020 Sep; 16(37):e2002806. PubMed ID: 32761793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards fast-charging technologies in Li
    Huang H; Niederberger M
    Nanoscale; 2019 Nov; 11(41):19225-19240. PubMed ID: 31532434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultracompressible, high-rate supercapacitors from graphene-coated carbon nanotube aerogels.
    Wilson E; Islam MF
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5612-8. PubMed ID: 25699583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D 3C-SiC/Graphene Hybrid Nanolaminate Films for High-Performance Supercapacitors.
    Heuser S; Yang N; Hof F; Schulte A; Schönherr H; Jiang X
    Small; 2018 Nov; 14(45):e1801857. PubMed ID: 30307709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.