BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31153086)

  • 1. New subtypes of allele-specific epigenetic effects: implications for brain development, function and disease.
    Kravitz SN; Gregg C
    Curr Opin Neurobiol; 2019 Dec; 59():69-78. PubMed ID: 31153086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse Non-genetic, Allele-Specific Expression Effects Shape Genetic Architecture at the Cellular Level in the Mammalian Brain.
    Huang WC; Ferris E; Cheng T; Hörndli CS; Gleason K; Tamminga C; Wagner JD; Boucher KM; Christian JL; Gregg C
    Neuron; 2017 Mar; 93(5):1094-1109.e7. PubMed ID: 28238550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic events regulating monoallelic gene expression.
    Massah S; Beischlag TV; Prefontaine GG
    Crit Rev Biochem Mol Biol; 2015; 50(4):337-58. PubMed ID: 26155735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allelic expression analysis in the brain suggests a role for heterogeneous insults affecting epigenetic processes in autism spectrum disorders.
    Ben-David E; Shohat S; Shifman S
    Hum Mol Genet; 2014 Aug; 23(15):4111-24. PubMed ID: 24659497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic loss of silencing of the imprinted Ndn/NDN allele, in a mouse model and humans with prader-willi syndrome, has functional consequences.
    Rieusset A; Schaller F; Unmehopa U; Matarazzo V; Watrin F; Linke M; Georges B; Bischof J; Dijkstra F; Bloemsma M; Corby S; Michel FJ; Wevrick R; Zechner U; Swaab D; Dudley K; Bezin L; Muscatelli F
    PLoS Genet; 2013; 9(9):e1003752. PubMed ID: 24039599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of DNA methylation on monoallelic expression.
    da Rocha ST; Gendrel AV
    Essays Biochem; 2019 Dec; 63(6):663-676. PubMed ID: 31782494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic imprinting and epigenetic control of development.
    Fedoriw A; Mugford J; Magnuson T
    Cold Spring Harb Perspect Biol; 2012 Jul; 4(7):a008136. PubMed ID: 22687277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inducible uniparental chromosome disomy to probe genomic imprinting at single-cell level in brain and beyond.
    Pauler FM; Hudson QJ; Laukoter S; Hippenmeyer S
    Neurochem Int; 2021 May; 145():104986. PubMed ID: 33600873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic and Antagonistic Allele-Specific Epigenetic Modifications Controlling the Expression of Imprinted Genes in Maize Endosperm.
    Dong X; Zhang M; Chen J; Peng L; Zhang N; Wang X; Lai J
    Mol Plant; 2017 Mar; 10(3):442-455. PubMed ID: 27793787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Perspectives on Genomic Imprinting, an Essential and Multifaceted Mode of Epigenetic Control in the Developing and Adult Brain.
    Perez JD; Rubinstein ND; Dulac C
    Annu Rev Neurosci; 2016 Jul; 39():347-84. PubMed ID: 27145912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of an imprinted gene cluster in the X-inactivation center.
    Kobayashi S; Totoki Y; Soma M; Matsumoto K; Fujihara Y; Toyoda A; Sakaki Y; Okabe M; Ishino F
    PLoS One; 2013; 8(8):e71222. PubMed ID: 23940725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallels between Mammalian Mechanisms of Monoallelic Gene Expression.
    Khamlichi AA; Feil R
    Trends Genet; 2018 Dec; 34(12):954-971. PubMed ID: 30217559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo.
    Lewis A; Green K; Dawson C; Redrup L; Huynh KD; Lee JT; Hemberger M; Reik W
    Development; 2006 Nov; 133(21):4203-10. PubMed ID: 17021040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allele-specific non-CG DNA methylation marks domains of active chromatin in female mouse brain.
    Keown CL; Berletch JB; Castanon R; Nery JR; Disteche CM; Ecker JR; Mukamel EA
    Proc Natl Acad Sci U S A; 2017 Apr; 114(14):E2882-E2890. PubMed ID: 28320934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stage-specific and cell type-specific aspects of genomic imprinting effects in mammals.
    Latham KE
    Differentiation; 1995 Dec; 59(5):269-82. PubMed ID: 8882812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of disease: epigenesis.
    Waggoner D
    Semin Pediatr Neurol; 2007 Mar; 14(1):7-14. PubMed ID: 17331879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The effects of genomic imprinting on animal development and cloning].
    Hou XJ; Jiao LH; Chen X; Wang L
    Yi Chuan Xue Bao; 2005 May; 32(5):550-4. PubMed ID: 16018269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imprinted gene expression in the brain.
    Davies W; Isles AR; Wilkinson LS
    Neurosci Biobehav Rev; 2005 May; 29(3):421-30. PubMed ID: 15820547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic modification and imprinting of the mammalian genome during development.
    Latham KE
    Curr Top Dev Biol; 1999; 43():1-49. PubMed ID: 9891882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA sequencing-based screen for reactivation of silenced alleles of autosomal genes.
    Gupta S; Lafontaine DL; Vigneau S; Mendelevich A; Vinogradova S; Igarashi KJ; Bortvin A; Alves-Pereira CF; Nag A; Gimelbrant AA
    G3 (Bethesda); 2022 Feb; 12(2):. PubMed ID: 35100361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.