These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 31153116)
1. Characterisation and constitutive modelling of biaxially stretched poly(L-lactic acid) sheet for application in coronary stents. Blair RW; Dunne NJ; Lennon AB; Menary GH J Mech Behav Biomed Mater; 2019 Sep; 97():346-354. PubMed ID: 31153116 [TBL] [Abstract][Full Text] [Related]
2. Processing-property relationships of biaxially stretched poly(L-lactic acid) sheet for application in coronary stents. Blair RW; Dunne NJ; Lennon AB; Menary GH J Mech Behav Biomed Mater; 2018 Oct; 86():113-121. PubMed ID: 29986286 [TBL] [Abstract][Full Text] [Related]
3. Computational analysis of the radial mechanical performance of PLLA coronary artery stents. Pauck RG; Reddy BD Med Eng Phys; 2015 Jan; 37(1):7-12. PubMed ID: 25456397 [TBL] [Abstract][Full Text] [Related]
4. Multi-objective optimisation of material properties and strut geometry for poly(L-lactic acid) coronary stents using response surface methodology. Blair RW; Dunne NJ; Lennon AB; Menary GH PLoS One; 2019; 14(8):e0218768. PubMed ID: 31449528 [TBL] [Abstract][Full Text] [Related]
5. Future Balloon-Expandable Stents: High or Low-Strength Materials? Khalilimeybodi A; Alishzadeh Khoei A; Sharif-Kashani B Cardiovasc Eng Technol; 2020 Apr; 11(2):188-204. PubMed ID: 31836964 [TBL] [Abstract][Full Text] [Related]
6. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent. Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483 [TBL] [Abstract][Full Text] [Related]
7. Mechanical characterization and modelling of the temperature-dependent impact behaviour of a biocompatible poly(L-lactide)/poly(ε-caprolactone) polymer blend. Gustafsson G; Nishida M; Ito Y; Häggblad HÅ; Jonsén P; Takayama T; Todo M J Mech Behav Biomed Mater; 2015 Nov; 51():279-90. PubMed ID: 26275490 [TBL] [Abstract][Full Text] [Related]
8. Structural optimization and finite element analysis of poly-l-lactide acid coronary stent with improved radial strength and acute recoil rate. Song K; Bi Y; Zhao H; Wu T; Xu F; Zhao G J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2754-2764. PubMed ID: 32154984 [TBL] [Abstract][Full Text] [Related]
9. A novel biodegradable stent applicable for use in congenital heart disease: bench testing and feasibility results in a rabbit model. Veeram Reddy SR; Welch TR; Wang J; Bernstein F; Richardson JA; Forbess JM; Nugent AW Catheter Cardiovasc Interv; 2014 Feb; 83(3):448-56. PubMed ID: 23592519 [TBL] [Abstract][Full Text] [Related]
10. Simulation of mechanical behavior of temperature-responsive braided stents made of shape memory polyurethanes. Kim JH; Kang TJ; Yu WR J Biomech; 2010 Mar; 43(4):632-43. PubMed ID: 19906380 [TBL] [Abstract][Full Text] [Related]
11. Mechanical properties of laser cut poly(L-lactide) micro-specimens: implications for stent design, manufacture, and sterilization. Grabow N; Schlun M; Sternberg K; Hakansson N; Kramer S; Schmitz KP J Biomech Eng; 2005 Feb; 127(1):25-31. PubMed ID: 15868785 [TBL] [Abstract][Full Text] [Related]
12. Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents. Wang Q; Fang G; Zhao Y; Wang G; Cai T J Mech Behav Biomed Mater; 2017 Jan; 65():415-427. PubMed ID: 27643678 [TBL] [Abstract][Full Text] [Related]
13. The effect of intrinsic characteristics on mechanical properties of poly(l-lactic acid) bioresorbable vascular stents. Hua R; Tian Y; Cheng J; Wu G; Jiang W; Ni Z; Zhao G Med Eng Phys; 2020 Jul; 81():118-124. PubMed ID: 32482508 [TBL] [Abstract][Full Text] [Related]
14. Exploring a parallel rheological framework to capture the mechanical behaviour of a thin-strut polymeric bioresorbable coronary scaffold. Hoddy B; Ahmed N; Al-Lamee K; Bullett N; Bressloff NW J Mech Behav Biomed Mater; 2022 Jun; 130():105154. PubMed ID: 35364363 [TBL] [Abstract][Full Text] [Related]
15. Coronary stent strut size dependent stress-strain response investigated using micromechanical finite element models. Savage P; O'Donnell BP; McHugh PE; Murphy BP; Quinn DF Ann Biomed Eng; 2004 Feb; 32(2):202-11. PubMed ID: 15008368 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of poly(L-lactic acid) as a material for intravascular polymeric stents. Agrawal CM; Haas KF; Leopold DA; Clark HG Biomaterials; 1992; 13(3):176-82. PubMed ID: 1567942 [TBL] [Abstract][Full Text] [Related]
17. Biodegradable vascular stents with high tensile and compressive strength: a novel strategy for applying monofilaments via solid-state drawing and shaped-annealing processes. Im SH; Kim CY; Jung Y; Jang Y; Kim SH Biomater Sci; 2017 Feb; 5(3):422-431. PubMed ID: 28184401 [TBL] [Abstract][Full Text] [Related]
18. Investigating the material modelling of a polymeric bioresorbable scaffold via in-silico and in-vitro testing. Hoddy B; Ahmed N; Al-Lamee K; Bullett N; Curzen N; Bressloff NW J Mech Behav Biomed Mater; 2021 Aug; 120():104557. PubMed ID: 33957569 [TBL] [Abstract][Full Text] [Related]
19. Nanoparticles-reinforced poly-l-lactic acid composite materials as bioresorbable scaffold candidates for coronary stents: Insights from mechanical and finite element analysis. Toong DWY; Ng JCK; Cui F; Leo HL; Zhong L; Lian SS; Venkatraman S; Tan LP; Huang YY; Ang HY J Mech Behav Biomed Mater; 2022 Jan; 125():104977. PubMed ID: 34814078 [TBL] [Abstract][Full Text] [Related]
20. A hazardous boundary of Poly(L-lactic acid) braided stent design: Limited elastic deformability of polymer materials. Li J; Cheng J; Hu X; Liu J; Tian Y; Wu G; Chen L; Zhang Y; Zhao G; Ni Z J Mech Behav Biomed Mater; 2023 Feb; 138():105628. PubMed ID: 36543082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]