These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31153178)

  • 1. Active Janus colloids at chemically structured surfaces.
    Uspal WE; Popescu MN; Dietrich S; Tasinkevych M
    J Chem Phys; 2019 May; 150(20):204904. PubMed ID: 31153178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guiding Catalytically Active Particles with Chemically Patterned Surfaces.
    Uspal WE; Popescu MN; Dietrich S; Tasinkevych M
    Phys Rev Lett; 2016 Jul; 117(4):048002. PubMed ID: 27494500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective Interactions between Chemically Active Colloids and Interfaces.
    Popescu MN; Uspal WE; Domínguez A; Dietrich S
    Acc Chem Res; 2018 Dec; 51(12):2991-2997. PubMed ID: 30403132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients.
    Popescu MN; Uspal WE; Dietrich S
    J Phys Condens Matter; 2017 Apr; 29(13):134001. PubMed ID: 28140364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Floor- or Ceiling-Sliding for Chemically Active, Gyrotactic, Sedimenting Janus Particles.
    Das S; Jalilvand Z; Popescu MN; Uspal WE; Dietrich S; Kretzschmar I
    Langmuir; 2020 Jun; 36(25):7133-7147. PubMed ID: 31986887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics near planar walls for various model self-phoretic particles.
    Bayati P; Popescu MN; Uspal WE; Dietrich S; Najafi A
    Soft Matter; 2019 Jul; 15(28):5644-5672. PubMed ID: 31245803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Chemotaxis of Self-Phoretic Active Colloids: Collective Behavior.
    Stark H
    Acc Chem Res; 2018 Nov; 51(11):2681-2688. PubMed ID: 30346724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-propulsion in 2D confinement: phoretic and hydrodynamic interactions.
    Choudhary A; Chaithanya KVS; Michelin S; Pushpavanam S
    Eur Phys J E Soft Matter; 2021 Jul; 44(7):97. PubMed ID: 34283325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orbits, Spirals, and Trapped States: Dynamics of a Phoretic Janus Particle in a Radial Concentration Gradient.
    Bayati P; Mallory SA
    ACS Nano; 2024 Aug; 18(34):23047-23057. PubMed ID: 39137334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perils of ad hoc approximations for the activity function of chemically powered colloids.
    Popescu MN; Uspal WE; Tasinkevych M; Dietrich S
    Eur Phys J E Soft Matter; 2017 Apr; 40(4):42. PubMed ID: 28389824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering.
    Uspal WE; Popescu MN; Dietrich S; Tasinkevych M
    Soft Matter; 2015 Jan; 11(3):434-8. PubMed ID: 25466926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed self-assembly of nematic liquid crystals on chemically patterned surfaces: morphological states and transitions.
    Li X; Armas-Perez JC; Martinez-Gonzalez JA; Liu X; Xie H; Bishop C; Hernandez-Ortiz JP; Zhang R; de Pablo JJ; Nealey PF
    Soft Matter; 2016 Oct; 12(41):8595-8605. PubMed ID: 27722676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical Casimir forces between homogeneous and chemically striped surfaces.
    Parisen Toldin F; Tröndle M; Dietrich S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052110. PubMed ID: 24329217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient coarsening and the motility of optically heated Janus colloids in a binary liquid mixture.
    Gomez-Solano JR; Roy S; Araki T; Dietrich S; Maciołek A
    Soft Matter; 2020 Sep; 16(36):8359-8371. PubMed ID: 32781461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart design of stripe-patterned gradient surfaces to control droplet motion.
    Bliznyuk O; Jansen HP; Kooij ES; Zandvliet HJ; Poelsema B
    Langmuir; 2011 Sep; 27(17):11238-45. PubMed ID: 21780836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental observation of flow fields around active Janus spheres.
    Campbell AI; Ebbens SJ; Illien P; Golestanian R
    Nat Commun; 2019 Sep; 10(1):3952. PubMed ID: 31477703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemotactic behavior for a self-phoretic Janus particle near a patch source of fuel.
    Mancuso V; Popescu MN; Uspal WE
    Soft Matter; 2024 Nov; 20(44):8742-8764. PubMed ID: 39400209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wetting and orientation of catalytic Janus colloids at the surface of water.
    Wang X; In M; Blanc C; Malgaretti P; Nobili M; Stocco A
    Faraday Discuss; 2016 Oct; 191():305-324. PubMed ID: 27412240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the velocity of chemically-driven Janus colloids considering the anisotropic concentration field.
    Lei L; Cheng R; Zhou Y; Yang T; Liang B; Wang S; Zhang X; Lin G; Zhou X
    Front Chem; 2022; 10():973961. PubMed ID: 36034655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deposition of colloid particles at heterogeneous and patterned surfaces.
    Adamczyk Z; Nattich M; Barbasz J
    Adv Colloid Interface Sci; 2009; 147-148():2-17. PubMed ID: 19193360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.