These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 31153226)

  • 41. Nested variant of the method of moments of coupled cluster equations for vertical excitation energies and excited-state potential energy surfaces.
    Kowalski K
    J Chem Phys; 2009 May; 130(19):194110. PubMed ID: 19466824
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental studies on magnetization in the excited state by using the magnetic field effect of light scattering based on multi-layer graphene particles suspended in organic solvents.
    He L; Li M; Xu H; Hu B
    Nanoscale; 2017 Feb; 9(7):2563-2568. PubMed ID: 28150824
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Locomotion in simulated microgravity: gravity replacement loads.
    McCrory JL; Baron HA; Balkin S; Cavanagh PR
    Aviat Space Environ Med; 2002 Jul; 73(7):625-31. PubMed ID: 12137096
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Brownian dynamics simulations of a dispersion composed of two-types of spherical particles: for development of a new technology to improve the visibility of rivers and lakes.
    Satoh A; Taneko E
    J Colloid Interface Sci; 2009 Oct; 338(1):236-42. PubMed ID: 19595358
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spectroscopic Diagnosis of Excited-State Aromaticity: Capturing Electronic Structures and Conformations upon Aromaticity Reversal.
    Oh J; Sung YM; Hong Y; Kim D
    Acc Chem Res; 2018 Jun; 51(6):1349-1358. PubMed ID: 29508985
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments.
    Herranz R; Manzano AI; van Loon JJ; Christianen PC; Medina FJ
    Astrobiology; 2013 Mar; 13(3):217-24. PubMed ID: 23510084
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Drop Capturing Based on Patterned Substrate in Space.
    Li W; Lan D; Sun H; Wang Y
    Langmuir; 2018 Apr; 34(16):4715-4721. PubMed ID: 29589761
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stress and large-scale spatial structures in dense, driven granular flows.
    Ferguson A; Chakraborty B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011303. PubMed ID: 16486133
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Superwettable Microchips as a Platform toward Microgravity Biosensing.
    Xu T; Shi W; Huang J; Song Y; Zhang F; Xu LP; Zhang X; Wang S
    ACS Nano; 2017 Jan; 11(1):621-626. PubMed ID: 27992718
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Granular transport in driven granular gas.
    Noirhomme M; Opsomer E; Vandewalle N; Ludewig F
    Eur Phys J E Soft Matter; 2015 Feb; 38(2):94. PubMed ID: 25704899
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microgravity Level Measurement of the Beijing Drop Tower Using a Sensitive Accelerometer.
    Liu TY; Wu QP; Sun BQ; Han FT
    Sci Rep; 2016 Aug; 6():31632. PubMed ID: 27530726
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plant biology in reduced gravity on the Moon and Mars.
    Kiss JZ
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():12-7. PubMed ID: 23889757
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Velocity statistics in excited granular media.
    Losert W; Cooper DG; Delour J; Kudrolli A; Gollub JP
    Chaos; 1999 Sep; 9(3):682-690. PubMed ID: 12779864
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fluid force predictions and experimental measurements for a magnetically levitated pediatric ventricular assist device.
    Throckmorton AL; Untaroiu A; Lim DS; Wood HG; Allaire PE
    Artif Organs; 2007 May; 31(5):359-68. PubMed ID: 17470205
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanical excitation of rodlike particles by a vibrating plate.
    Trittel T; Harth K; Stannarius R
    Phys Rev E; 2017 Jun; 95(6-1):062904. PubMed ID: 28709235
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of gravity and microgravity on intracranial pressure.
    Lawley JS; Petersen LG; Howden EJ; Sarma S; Cornwell WK; Zhang R; Whitworth LA; Williams MA; Levine BD
    J Physiol; 2017 Mar; 595(6):2115-2127. PubMed ID: 28092926
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Human motor control of landing from a drop in simulated microgravity.
    Gambelli CN; Theisen D; Willems PA; Schepens B
    J Appl Physiol (1985); 2016 Sep; 121(3):760-770. PubMed ID: 27516535
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bending of magnetic filaments under a magnetic field.
    Shcherbakov VP; Winklhofer M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061803. PubMed ID: 15697393
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neuronal responses to vector-averaged gravity: a search for gravisensing and adaptation mechanisms--a preliminary report.
    Gruener R
    Uchu Koku Kankyo Igaku; 1998; 35():63-83. PubMed ID: 11542435
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unjamming due to local perturbations in granular packings with and without gravity.
    Shaebani MR; Unger T; Kertész J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011308. PubMed ID: 18763949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.