These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31153228)

  • 1. A multifunction digital receiver suitable for real-time frequency detection and compensation in fast magnetic resonance imaging.
    Li L; Wyrwicz AM
    Rev Sci Instrum; 2019 May; 90(5):053707. PubMed ID: 31153228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A digital magnetic resonance imaging spectrometer using digital signal processor and field programmable gate array.
    Liang X; Binghe S; Yueping M; Ruyan Z
    Rev Sci Instrum; 2013 May; 84(5):054702. PubMed ID: 23742570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A firmware-defined digital direct-sampling NMR spectrometer for condensed matter physics.
    Pikulski M; Shiroka T; Ott HR; Mesot J
    Rev Sci Instrum; 2014 Sep; 85(9):093906. PubMed ID: 25273738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Credit-card sized field and benchtop NMR relaxometers using field programmable gate arrays.
    Webber JBW; Demin P
    Magn Reson Imaging; 2019 Feb; 56():45-51. PubMed ID: 30344057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time plasma control based on the ISTTOK tomography diagnostic.
    Carvalho PJ; Carvalho BB; Neto A; Coelho R; Fernandes H; Sousa J; Varandas C; Chávez-Alarcón E; Herrera-Velázquez JJ
    Rev Sci Instrum; 2008 Oct; 79(10):10F329. PubMed ID: 19044637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wideband Array Signal Processing with Real-Time Adaptive Interference Mitigation.
    Whipple A; Ruzindana MW; Burnett MC; Kunzler JW; Lyman K; Jeffs BD; Warnick KF
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A digital receiver module with direct data acquisition for magnetic resonance imaging systems.
    Tang W; Sun H; Wang W
    Rev Sci Instrum; 2012 Oct; 83(10):104701. PubMed ID: 23126784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FPGA-based 4 × 29.4912 Gbit/s PS-PAM4 signal transmission with a low-complexity probabilistic shaping scheme.
    Wang K; Zhang L; Chen Y; Wang Y; Wang C; Chen Y; Yu J
    Opt Lett; 2023 Mar; 48(6):1514-1517. PubMed ID: 36946966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Rate Acquisition for Dead Time Reduction in Magnetic Resonance Receivers: Application to Imaging With Zero Echo Time.
    Marjanovic J; Weiger M; Reber J; Brunner DO; Dietrich BE; Wilm BJ; Froidevaux R; Pruessmann KP
    IEEE Trans Med Imaging; 2018 Feb; 37(2):408-416. PubMed ID: 28910759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multichannel digital phase sensitive detection using a field programmable gate array development platform.
    Lascos SJ; Cassidy DT
    Rev Sci Instrum; 2008 Jul; 79(7):074702. PubMed ID: 18681724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A digitizer based compact digital spectrometer for ion beam analysis using Field Programmable Gate Arrays and various energy algorithms.
    Jäger M; Reinert T
    Rev Sci Instrum; 2013 Aug; 84(8):085105. PubMed ID: 24007105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FFT-Based Simultaneous Calculations of Very Long Signal Multi-Resolution Spectra for Ultra-Wideband Digital Radio Frequency Receiver and Other Digital Sensor Applications.
    Wu C; Low M
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FPGA implementation of a real-time digital pulse processing analysis for radiation detectors.
    Zhang J; Qin X; Zhao M; Chen X
    Appl Radiat Isot; 2021 Oct; 176():109900. PubMed ID: 34428675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of optical OFDM signals using 21.4 GS/s real time digital signal processing.
    Benlachtar Y; Watts PM; Bouziane R; Milder P; Rangaraj D; Cartolano A; Koutsoyannis R; Hoe JC; Püschel M; Glick M; Killey RI
    Opt Express; 2009 Sep; 17(20):17658-68. PubMed ID: 19907551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel 2D FFT implementation on FPGA suitable for real-time MR image processing.
    Li L; Wyrwicz AM
    Rev Sci Instrum; 2018 Sep; 89(9):093706. PubMed ID: 30278692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly integrated FPGA-based nuclear magnetic resonance spectrometer.
    Takeda K
    Rev Sci Instrum; 2007 Mar; 78(3):033103. PubMed ID: 17411174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of the Configuration Structure of an Integrated Computational Core of a Pulsed NQR Sensor Based on FPGA.
    Samila A; Hotra O; Majewski J
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of digital signal processing technologies with pulsed electron paramagnetic resonance imaging.
    Pursley RH; Salem G; Devasahayam N; Subramanian S; Koscielniak J; Krishna MC; Pohida TJ
    J Magn Reson; 2006 Feb; 178(2):220-7. PubMed ID: 16243552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated device with high performance multi-function generators and time-to-digital convertors.
    Qin X; Shi Z; Xie Y; Wang L; Rong X; Jia W; Zhang W; Du J
    Rev Sci Instrum; 2017 Jan; 88(1):014702. PubMed ID: 28147660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FPGA implementation of real-time SENSE reconstruction using pre-scan and Emaps sensitivities.
    Siddiqui MF; Reza AW; Shafique A; Omer H; Kanesan J
    Magn Reson Imaging; 2017 Dec; 44():82-91. PubMed ID: 28855113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.