BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31153299)

  • 1. The difference between first and second harmonic amplitudes correlates between glottal airflow and neck-surface accelerometer signals during phonation.
    Mehta DD; Espinoza VM; Van Stan JH; Zañartu M; Hillman RE
    J Acoust Soc Am; 2019 May; 145(5):EL386. PubMed ID: 31153299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variability in the relationships among voice quality, harmonic amplitudes, open quotient, and glottal area waveform shape in sustained phonation.
    Kreiman J; Shue YL; Chen G; Iseli M; Gerratt BR; Neubauer J; Alwan A
    J Acoust Soc Am; 2012 Oct; 132(4):2625-32. PubMed ID: 23039455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of odd-harmonic amplitudes to open quotient and skewing quotient in glottal airflow.
    Titze IR
    J Acoust Soc Am; 2015 Jan; 137(1):502-4. PubMed ID: 25618080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Reconstruction of Phonatory Glottal Shape and Volume: Effects of Neuromuscular Activation.
    Reddy NK; Schlegel P; Lee Y; Chhetri DK
    Laryngoscope; 2023 Feb; 133(2):357-365. PubMed ID: 35633189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of two isolated vocal facilitating techniques glottal fry and yawn-sigh on the phonation of female speech-language pathology students: A pilot study.
    Meerschman I; D'haeseleer E; Catry T; Ruigrok B; Claeys S; Van Lierde K
    J Commun Disord; 2017 Mar; 66():40-50. PubMed ID: 28412598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambulatory monitoring of disordered voices.
    Hillman RE; Heaton JT; Masaki A; Zeitels SM; Cheyne HA
    Ann Otol Rhinol Laryngol; 2006 Nov; 115(11):795-801. PubMed ID: 17165660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glottal Aerodynamics Estimated From Neck-Surface Vibration in Women With Phonotraumatic and Nonphonotraumatic Vocal Hyperfunction.
    Espinoza VM; Mehta DD; Van Stan JH; Hillman RE; Zañartu M
    J Speech Lang Hear Res; 2020 Sep; 63(9):2861-2869. PubMed ID: 32755502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonatory control in male singing: a study of the effects of subglottal pressure, fundamental frequency, and mode of phonation on the voice source.
    Sundberg J; Titze I; Scherer R
    J Voice; 1993 Mar; 7(1):15-29. PubMed ID: 8353616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using electroglottographic real-time feedback to control posterior glottal adduction during phonation.
    Herbst CT; Howard D; Schlömicher-Thier J
    J Voice; 2010 Jan; 24(1):72-85. PubMed ID: 19185453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic extremes of voice in the light of time domain parameters extracted from the amplitude features of glottal flow and its derivative.
    Vilkman E; Alku P; Vintturi J
    Folia Phoniatr Logop; 2002; 54(3):144-57. PubMed ID: 12077506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vocal intensity in speakers and singers.
    Titze IR; Sundberg J
    J Acoust Soc Am; 1992 May; 91(5):2936-46. PubMed ID: 1629486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measures of phonation type in Hmong.
    Huffman MK
    J Acoust Soc Am; 1987 Feb; 81(2):495-504. PubMed ID: 3558967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory Laryngeal Coordination in Airflow Conservation and Reduction of Respiratory Effort of Phonation.
    Zhang Z
    J Voice; 2016 Nov; 30(6):760.e7-760.e13. PubMed ID: 26596845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of vocal aging using parameters extracted from the glottal signal.
    Forero Mendoza LA; Cataldo E; Vellasco MM; Silva MA; Apolinário JA
    J Voice; 2014 Sep; 28(5):532-7. PubMed ID: 24880675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnitude of Neck-Surface Vibration as an Estimate of Subglottal Pressure During Modulations of Vocal Effort and Intensity in Healthy Speakers.
    McKenna VS; Llico AF; Mehta DD; Perkell JS; Stepp CE
    J Speech Lang Hear Res; 2017 Dec; 60(12):3404-3416. PubMed ID: 29204608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of an artificially lengthened vocal tract on estimated glottal contact quotient in untrained male voices.
    Gaskill CS; Erickson ML
    J Voice; 2010 Jan; 24(1):57-71. PubMed ID: 19135851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerodynamic and acoustical measures of speech, operatic, and Broadway vocal styles in a professional female singer.
    Stone RE; Cleveland TF; Sundberg PJ; Prokop J
    J Voice; 2003 Sep; 17(3):283-97. PubMed ID: 14513952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voice Relative Fundamental Frequency Via Neck-Skin Acceleration in Individuals With Voice Disorders.
    Lien YA; Calabrese CR; Michener CM; Murray EH; Van Stan JH; Mehta DD; Hillman RE; Noordzij JP; Stepp CE
    J Speech Lang Hear Res; 2015 Oct; 58(5):1482-7. PubMed ID: 26134171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glottal airflow and transglottal air pressure measurements for male and female speakers in soft, normal, and loud voice.
    Holmberg EB; Hillman RE; Perkell JS
    J Acoust Soc Am; 1988 Aug; 84(2):511-29. PubMed ID: 3170944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of the voice source from speech pressure signals: evaluation of an inverse filtering technique using physical modelling of voice production.
    Alku P; Story B; Airas M
    Folia Phoniatr Logop; 2006; 58(2):102-13. PubMed ID: 16479132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.