These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31153299)

  • 21. Estimation of the voice source from speech pressure signals: evaluation of an inverse filtering technique using physical modelling of voice production.
    Alku P; Story B; Airas M
    Folia Phoniatr Logop; 2006; 58(2):102-13. PubMed ID: 16479132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Period and glottal width irregularities in vocally normal speakers.
    Bonilha HS; Deliyski DD
    J Voice; 2008 Nov; 22(6):699-708. PubMed ID: 18031989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parameterization of the voice source by combining spectral decay and amplitude features of the glottal flow.
    Alku P; Vilkman E; Laukkanen AM
    J Speech Lang Hear Res; 1998 Oct; 41(5):990-1002. PubMed ID: 9771623
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of glottal closure configuration on vocal efficacy in young normal-speaking women.
    Schneider B; Bigenzahn W
    J Voice; 2003 Dec; 17(4):468-80. PubMed ID: 14740929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Individual variation in measures of voice.
    Holmberg EB; Perkell JS; Hillman RE; Gress C
    Phonetica; 1994; 51(1-3):30-7. PubMed ID: 8052674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ventricular-fold dynamics in human phonation.
    Bailly L; Bernardoni NH; Müller F; Rohlfs AK; Hess M
    J Speech Lang Hear Res; 2014 Aug; 57(4):1219-42. PubMed ID: 24687091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glottal closure, transglottal airflow, and voice quality in healthy middle-aged women.
    Södersten M; Hertegård S; Hammarberg B
    J Voice; 1995 Jun; 9(2):182-97. PubMed ID: 7620541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects on the glottal voice source of vocal loudness variation in untrained female and male voices.
    Sundberg J; Fahlstedt E; Morell A
    J Acoust Soc Am; 2005 Feb; 117(2):879-85. PubMed ID: 15759707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Voice Quality in Native and Foreign Languages Investigated by Inverse Filtering and Perceptual Analyses.
    Järvinen K; Laukkanen AM; Geneid A
    J Voice; 2017 Mar; 31(2):261.e25-261.e31. PubMed ID: 27495969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Age- and gender-related difference of vocal fold vibration and glottal configuration in normal speakers: analysis with glottal area waveform.
    Yamauchi A; Yokonishi H; Imagawa H; Sakakibara K; Nito T; Tayama N; Yamasoba T
    J Voice; 2014 Sep; 28(5):525-31. PubMed ID: 24836359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glottal closure and perceived breathiness during phonation in normally speaking subjects.
    Södersten M; Lindestad PA
    J Speech Hear Res; 1990 Sep; 33(3):601-11. PubMed ID: 2232777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of lung volume on the glottal voice source.
    Iwarsson J; Thomasson M; Sundberg J
    J Voice; 1998 Dec; 12(4):424-33. PubMed ID: 9988029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coordination between posture and phonation in vocal effort behavior.
    Lagier A; Vaugoyeau M; Ghio A; Legou T; Giovanni A; Assaiante C
    Folia Phoniatr Logop; 2010; 62(4):195-202. PubMed ID: 20460932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of glottal voice source quantification parameters in breathy, normal and pressed phonation of female and male speakers.
    Alku P; Vilkman E
    Folia Phoniatr Logop; 1996; 48(5):240-54. PubMed ID: 8828282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glottal Adduction and Subglottal Pressure in Singing.
    Herbst CT; Hess M; Müller F; Švec JG; Sundberg J
    J Voice; 2015 Jul; 29(4):391-402. PubMed ID: 25944295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skewing of the glottal flow with respect to the glottal area measured in natural production of vowels.
    Alku P; Murtola T; Malinen J; Geneid A; Vilkman E
    J Acoust Soc Am; 2019 Oct; 146(4):2501. PubMed ID: 31671985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phonation Demonstrates Goal Dependence Under Unique Vocal Intensity and Aerobic Workload Conditions.
    Ziegler A; VanSwearingen J; Jakicic JM; Verdolini Abbott K
    J Speech Lang Hear Res; 2019 Aug; 62(8):2584-2600. PubMed ID: 31291159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of resonance tubes on glottal contact quotient with and without task instruction: a comparison of trained and untrained voices.
    Gaskill CS; Quinney DM
    J Voice; 2012 May; 26(3):e79-93. PubMed ID: 21550779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.