These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31153328)

  • 1. Indirect boundary element method combining extra fundamental solutions for solving exterior acoustic problems with fictitious frequencies.
    Lee JW; Chen JT; Nien CF
    J Acoust Soc Am; 2019 May; 145(5):3116. PubMed ID: 31153328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new method for true and spurious eigensolutions of arbitrary cavities using the combined Helmholtz exterior integral equation formulation method.
    Chen IL; Chen JT; Kuo SR; Liang MT
    J Acoust Soc Am; 2001 Mar; 109(3):982-98. PubMed ID: 11303950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of time domain acoustic boundary element method for the exterior problem avoiding the nonuniqueness.
    Jang HW; Ih JG
    J Acoust Soc Am; 2013 Mar; 133(3):1237-44. PubMed ID: 23463996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of nonsingular boundary integral formulation for reducing errors due to near-field measurements in the boundary element method based near-field acoustic holography.
    Kang SC; Ih JG
    J Acoust Soc Am; 2001 Apr; 109(4):1320-8. PubMed ID: 11325103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Singular meshless method using double layer potentials for exterior acoustics.
    Young DL; Chen KH; Lee CW
    J Acoust Soc Am; 2006 Jan; 119(1):96-107. PubMed ID: 16454268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boundary regularized integral equation formulation of the Helmholtz equation in acoustics.
    Sun Q; Klaseboer E; Khoo BC; Chan DY
    R Soc Open Sci; 2015 Jan; 2(1):140520. PubMed ID: 26064591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solving the hypersingular boundary integral equation for the Burton and Miller formulation.
    Langrenne C; Garcia A; Bonnet M
    J Acoust Soc Am; 2015 Nov; 138(5):3332-40. PubMed ID: 26627805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast and stable solver for acoustic scattering problems based on the nonuniform grid approach.
    Chernokozhin E; Brick Y; Boag A
    J Acoust Soc Am; 2016 Jan; 139(1):472-80. PubMed ID: 26827041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Burton-Miller inverse boundary element method for near-field acoustic holography.
    Chappell DJ; Harris PJ
    J Acoust Soc Am; 2009 Jul; 126(1):149-57. PubMed ID: 19603872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions.
    Kondapalli PS; Shippy DJ; Fairweather G
    J Acoust Soc Am; 1992 Apr; 91(4 Pt 1):1844-54. PubMed ID: 1597593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A boundary integral equation method using auxiliary interior surface approach for acoustic radiation and scattering in two dimensions.
    Yang SA
    J Acoust Soc Am; 2002 Oct; 112(4):1307-17. PubMed ID: 12398437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypersingular meshless method using double-layer potentials for three-dimensional exterior acoustic problems.
    Young DL; Chen KH; Liu TY; Wu CS
    J Acoust Soc Am; 2016 Jan; 139(1):529-40. PubMed ID: 26827046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of partially immersed elastic structures using a symmetric formulation for coupled boundary element and finite element methods.
    Chen PT; Lin CS; Yang T
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):866-75. PubMed ID: 12243173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity analysis of acoustic eigenfrequencies by using a boundary element method.
    Zheng C; Zhao W; Gao H; Du L; Zhang Y; Bi C
    J Acoust Soc Am; 2021 Mar; 149(3):2027. PubMed ID: 33765777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the modeling of narrow gaps using the standard boundary element method.
    Cutanda V; Juhl PM; Jacobsen F
    J Acoust Soc Am; 2001 Apr; 109(4):1296-303. PubMed ID: 11325100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling sound scattering using a combination of the edge source integral equation and the boundary element method.
    Martin SR; Svensson UP; Slechta J; Smith JO
    J Acoust Soc Am; 2018 Jul; 144(1):131. PubMed ID: 30075636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved accuracy for radiation damping in coupled finite element/equivalent source computations.
    Fahnline JB
    J Acoust Soc Am; 2021 Oct; 150(4):2375. PubMed ID: 34717487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational acoustic field reconstruction process based on an indirect boundary element formulation.
    Zhang Z; Vlahopoulos N; Raveendra ST; Allen T; Zhang KY
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2167-78. PubMed ID: 11108355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic scattering from finite and infinite array of two-dimensional overfilled cavities in a conductive surface using a hybrid finite element surface integral equation method.
    Alavikia B; Ramahi OM
    J Opt Soc Am A Opt Image Sci Vis; 2012 Nov; 29(11):2444-50. PubMed ID: 23201808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of sound level at high-frequency bands by means of a simplified boundary element method.
    Kim JK; Ih JG
    J Acoust Soc Am; 2002 Dec; 112(6):2645-55. PubMed ID: 12508985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.