These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31153459)

  • 21. Synthesis, Characterization and Cholinesterase Inhibition Studies of New Arylidene Aminothiazolylethanone Derivatives.
    Channar PA; Shah MS; Saeed A; Khan SU; Larik FA; Shabir G; Iqbal J
    Med Chem; 2017; 13(7):648-653. PubMed ID: 28266279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design, synthesis and pharmacological evaluation of chalcone derivatives as acetylcholinesterase inhibitors.
    Liu HR; Liu XJ; Fan HQ; Tang JJ; Gao XH; Liu WK
    Bioorg Med Chem; 2014 Nov; 22(21):6124-33. PubMed ID: 25260958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of Novel Dual Acetyl- and Butyrylcholinesterase Inhibitors as Potential Anti-Alzheimer's Disease Agents Using Pharmacophore, 3D-QSAR, and Molecular Docking Approaches.
    Pang X; Fu H; Yang S; Wang L; Liu AL; Wu S; Du GH
    Molecules; 2017 Jul; 22(8):. PubMed ID: 28933746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, Biological Evaluation and In Silico Computational Studies of 7-Chloro-4-(1
    Rosado-Solano DN; Barón-Rodríguez MA; Sanabria Florez PL; Luna-Parada LK; Puerto-Galvis CE; Zorro-González AF; Kouznetsov VV; Vargas-Méndez LY
    J Agric Food Chem; 2019 Aug; 67(33):9210-9219. PubMed ID: 31390203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and synthesis of some new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring and the investigation of their inhibitory potential on in-vitro acetylcholinesterase and butyrylcholinesterase.
    Kilic B; Gulcan HO; Aksakal F; Ercetin T; Oruklu N; Umit Bagriacik E; Dogruer DS
    Bioorg Chem; 2018 Sep; 79():235-249. PubMed ID: 29775949
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Abeta1-42 aggregation for Alzheimer's disease therapeutics.
    Kwon YE; Park JY; No KT; Shin JH; Lee SK; Eun JS; Yang JH; Shin TY; Kim DK; Chae BS; Leem JY; Kim KH
    Bioorg Med Chem; 2007 Oct; 15(20):6596-607. PubMed ID: 17681794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis, Biological Evaluation and Molecular Docking Study of Hydrazone-Containing Pyridinium Salts as Cholinesterase Inhibitors.
    Parlar S; Bayraktar G; Tarikogullari AH; Alptüzün V; Erciyas E
    Chem Pharm Bull (Tokyo); 2016; 64(9):1281-7. PubMed ID: 27581632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D QSAR studies of AChE inhibitors based on molecular docking scores and CoMFA.
    Akula N; Lecanu L; Greeson J; Papadopoulos V
    Bioorg Med Chem Lett; 2006 Dec; 16(24):6277-80. PubMed ID: 17049234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of Human Acetylcholinesterase Inhibitors from the Constituents of EGb761 by Modeling Docking and Molecular Dynamics Simulations.
    Zhang L; Li D; Cao F; Xiao W; Zhao L; Ding G; Wang ZZ
    Comb Chem High Throughput Screen; 2018; 21(1):41-49. PubMed ID: 29173156
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and anti-acetylcholinesterase activity of scopoletin derivatives.
    Khunnawutmanotham N; Chimnoi N; Saparpakorn P; Techasakul S
    Bioorg Chem; 2016 Apr; 65():137-45. PubMed ID: 26943478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and biological evaluation of 5-benzylidenerhodanine-3-acetic acid derivatives as AChE and 15-LOX inhibitors.
    Shafii N; Khoobi M; Amini M; Sakhteman A; Nadri H; Moradi A; Emami S; Saeedian Moghadam E; Foroumadi A; Shafiee A
    J Enzyme Inhib Med Chem; 2015 Jun; 30(3):389-95. PubMed ID: 26095345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and Evaluation of Novel Ligustrazine Derivatives as Multi-Targeted Inhibitors for the Treatment of Alzheimer's Disease.
    Wu W; Liang X; Xie G; Chen L; Liu W; Luo G; Zhang P; Yu L; Zheng X; Ji H; Zhang C; Yi W
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30301153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Re-engineering aryl methylcarbamates to confer high selectivity for inhibition of Anopheles gambiae versus human acetylcholinesterase.
    Hartsel JA; Wong DM; Mutunga JM; Ma M; Anderson TD; Wysinski A; Islam R; Wong EA; Paulson SL; Li J; Lam PC; Totrov MM; Bloomquist JR; Carlier PR
    Bioorg Med Chem Lett; 2012 Jul; 22(14):4593-8. PubMed ID: 22738634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis, structure-activity relationship and molecular docking of 3-oxoaurones and 3-thioaurones as acetylcholinesterase and butyrylcholinesterase inhibitors.
    Mughal EU; Sadiq A; Murtaza S; Rafique H; Zafar MN; Riaz T; Khan BA; Hameed A; Khan KM
    Bioorg Med Chem; 2017 Jan; 25(1):100-106. PubMed ID: 27780618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and biological evaluation of 1,3,4-thiadiazole analogues as novel AChE and BuChE inhibitors.
    Skrzypek A; Matysiak J; Niewiadomy A; Bajda M; Szymański P
    Eur J Med Chem; 2013 Apr; 62():311-9. PubMed ID: 23376249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acetylcholinesterase inhibitors: structure based design, synthesis, pharmacophore modeling, and virtual screening.
    Valasani KR; Chaney MO; Day VW; Shidu Yan S
    J Chem Inf Model; 2013 Aug; 53(8):2033-46. PubMed ID: 23777291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of molecular descriptors for design of novel Isoalloxazine derivatives as potential Acetylcholinesterase inhibitors against Alzheimer's disease.
    Gurung AB; Aguan K; Mitra S; Bhattacharjee A
    J Biomol Struct Dyn; 2017 Jun; 35(8):1729-1742. PubMed ID: 27410776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design, facile synthesis, and evaluation of novel spiro- and pyrazolo[1,5-c]quinazolines as cholinesterase inhibitors: Molecular docking and MM/GBSA studies.
    Gálvez J; Polo S; Insuasty B; Gutiérrez M; Cáceres D; Alzate-Morales JH; De-la-Torre P; Quiroga J
    Comput Biol Chem; 2018 Jun; 74():218-229. PubMed ID: 29655025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors.
    Sheng R; Lin X; Zhang J; Chol KS; Huang W; Yang B; He Q; Hu Y
    Bioorg Med Chem; 2009 Sep; 17(18):6692-8. PubMed ID: 19692250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and acetylcholinesterase inhibitory activity of Mannich base derivatives flavokawain B.
    Liu HR; Huang XQ; Lou DH; Liu XJ; Liu WK; Wang QA
    Bioorg Med Chem Lett; 2014 Oct; 24(19):4749-4753. PubMed ID: 25205193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.