These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 31153553)

  • 1. A deep learning radiomics model for preoperative grading in meningioma.
    Zhu Y; Man C; Gong L; Dong D; Yu X; Wang S; Fang M; Wang S; Fang X; Chen X; Tian J
    Eur J Radiol; 2019 Jul; 116():128-134. PubMed ID: 31153553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning radiomics model may help to improve the prediction performance of preoperative grading in meningioma.
    Yang L; Xu P; Zhang Y; Cui N; Wang M; Peng M; Gao C; Wang T
    Neuroradiology; 2022 Jul; 64(7):1373-1382. PubMed ID: 35037985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging.
    Park YW; Oh J; You SC; Han K; Ahn SS; Choi YS; Chang JH; Kim SH; Lee SK
    Eur Radiol; 2019 Aug; 29(8):4068-4076. PubMed ID: 30443758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting meningioma grades and pathologic marker expression via deep learning.
    Chen J; Xue Y; Ren L; Lv K; Du P; Cheng H; Sun S; Hua L; Xie Q; Wu R; Gong Y
    Eur Radiol; 2024 May; 34(5):2997-3008. PubMed ID: 37853176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI.
    Hu J; Zhao Y; Li M; Liu J; Wang F; Weng Q; Wang X; Cao D
    Eur J Radiol; 2020 Oct; 131():109251. PubMed ID: 32916409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A radiomics model for preoperative prediction of brain invasion in meningioma non-invasively based on MRI: A multicentre study.
    Zhang J; Yao K; Liu P; Liu Z; Han T; Zhao Z; Cao Y; Zhang G; Zhang J; Tian J; Zhou J
    EBioMedicine; 2020 Aug; 58():102933. PubMed ID: 32739863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of deep learning to differentiate the histopathological grading of meningiomas on MR images: A preliminary study.
    Banzato T; Causin F; Della Puppa A; Cester G; Mazzai L; Zotti A
    J Magn Reson Imaging; 2019 Oct; 50(4):1152-1159. PubMed ID: 30896065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI.
    Han Y; Wang T; Wu P; Zhang H; Chen H; Yang C
    Magn Reson Imaging; 2021 Apr; 77():36-43. PubMed ID: 33220449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of meningioma grade by constructing a clinical radiomics model nomogram based on magnetic resonance imaging.
    Han T; Liu X; Long C; Xu Z; Geng Y; Zhang B; Deng L; Jing M; Zhou J
    Magn Reson Imaging; 2023 Dec; 104():16-22. PubMed ID: 37734573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based automatic segmentation of meningioma from T1-weighted contrast-enhanced MRI for preoperative meningioma differentiation using radiomic features.
    Yang L; Wang T; Zhang J; Kang S; Xu S; Wang K
    BMC Med Imaging; 2024 Mar; 24(1):56. PubMed ID: 38443817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of Radiomics-Based Feature Analysis on Multiparametric Magnetic Resonance Images for Noninvasive Meningioma Grading.
    Laukamp KR; Shakirin G; Baeßler B; Thiele F; Zopfs D; Große Hokamp N; Timmer M; Kabbasch C; Perkuhn M; Borggrefe J
    World Neurosurg; 2019 Dec; 132():e366-e390. PubMed ID: 31476455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Clinicopathological-Radiomics Model for Predicting Progression and Recurrence in Meningioma Patients.
    He M; Wang X; Huang C; Peng X; Li N; Li F; Dong H; Wang Z; Zhao L; Wu F; Zhang M; Guan X; Xu X
    Acad Radiol; 2024 May; 31(5):2061-2073. PubMed ID: 37993304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study.
    Chen H; Li S; Zhang Y; Liu L; Lv X; Yi Y; Ruan G; Ke C; Feng Y
    Eur Radiol; 2022 Oct; 32(10):7248-7259. PubMed ID: 35420299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Deep Convolutional Neural Network With Performance Comparable to Radiologists for Differentiating Between Spinal Schwannoma and Meningioma.
    Maki S; Furuya T; Horikoshi T; Yokota H; Mori Y; Ota J; Kawasaki Y; Miyamoto T; Norimoto M; Okimatsu S; Shiga Y; Inage K; Orita S; Takahashi H; Suyari H; Uno T; Ohtori S
    Spine (Phila Pa 1976); 2020 May; 45(10):694-700. PubMed ID: 31809468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning Radiomics for the Assessment of Telomerase Reverse Transcriptase Promoter Mutation Status in Patients With Glioblastoma Using Multiparametric MRI.
    Zhang H; Zhang H; Zhang Y; Zhou B; Wu L; Lei Y; Huang B
    J Magn Reson Imaging; 2023 Nov; 58(5):1441-1451. PubMed ID: 36896953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiparameter MRI-based radiomics nomogram for preoperative prediction of brain invasion in atypical meningioma:a multicentre study.
    Yu J; Kong X; Xie D; Zheng F; Wang C; Shi D; He C; Liang X; Xu H; Li S; Chen X
    BMC Med Imaging; 2024 Jun; 24(1):134. PubMed ID: 38840054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meningioma consistency assessment based on the fusion of deep learning features and radiomics features.
    Zhang J; Zhao Y; Lu Y; Li P; Dang S; Li X; Yin B; Zhao L
    Eur J Radiol; 2024 Jan; 170():111250. PubMed ID: 38071910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery.
    Tan Y; Zhang ST; Wei JW; Dong D; Wang XC; Yang GQ; Tian J; Zhang H
    Eur Radiol; 2019 Jul; 29(7):3325-3337. PubMed ID: 30972543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presurgical differentiation between malignant haemangiopericytoma and angiomatous meningioma by a radiomics approach based on texture analysis.
    Li X; Lu Y; Xiong J; Wang D; She D; Kuai X; Geng D; Yin B
    J Neuroradiol; 2019 Sep; 46(5):281-287. PubMed ID: 31226327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intelligent noninvasive meningioma grading with a fully automatic segmentation using interpretable multiparametric deep learning.
    Jun Y; Park YW; Shin H; Shin Y; Lee JR; Han K; Ahn SS; Lim SM; Hwang D; Lee SK
    Eur Radiol; 2023 Sep; 33(9):6124-6133. PubMed ID: 37052658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.