These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
513 related articles for article (PubMed ID: 31153553)
21. Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas. Zhao Z; Nie C; Zhao L; Xiao D; Zheng J; Zhang H; Yan P; Jiang X; Zhao H Eur Radiol; 2024 Apr; 34(4):2468-2479. PubMed ID: 37812296 [TBL] [Abstract][Full Text] [Related]
22. Machine learning analyses can differentiate meningioma grade by features on magnetic resonance imaging. Hale AT; Stonko DP; Wang L; Strother MK; Chambless LB Neurosurg Focus; 2018 Nov; 45(5):E4. PubMed ID: 30453458 [TBL] [Abstract][Full Text] [Related]
23. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study. Hamerla G; Meyer HJ; Schob S; Ginat DT; Altman A; Lim T; Gihr GA; Horvath-Rizea D; Hoffmann KT; Surov A Magn Reson Imaging; 2019 Nov; 63():244-249. PubMed ID: 31425811 [TBL] [Abstract][Full Text] [Related]
24. Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic-MRI and Deep-Learning Radiomics Signatures. Zhang Y; Zhang H; Zhang H; Ouyang Y; Su R; Yang W; Huang B J Magn Reson Imaging; 2024 Sep; 60(3):909-920. PubMed ID: 37955154 [TBL] [Abstract][Full Text] [Related]
25. Intelligent noninvasive meningioma grading with a fully automatic segmentation using interpretable multiparametric deep learning. Jun Y; Park YW; Shin H; Shin Y; Lee JR; Han K; Ahn SS; Lim SM; Hwang D; Lee SK Eur Radiol; 2023 Sep; 33(9):6124-6133. PubMed ID: 37052658 [TBL] [Abstract][Full Text] [Related]
26. Differentiation Researches on the Meningioma Subtypes by Radiomics from Contrast-Enhanced Magnetic Resonance Imaging: A Preliminary Study. Niu L; Zhou X; Duan C; Zhao J; Sui Q; Liu X; Zhang X World Neurosurg; 2019 Jun; 126():e646-e652. PubMed ID: 30831287 [TBL] [Abstract][Full Text] [Related]
27. Preoperative prediction of CNS WHO grade and tumour aggressiveness in intracranial meningioma based on radiomics and structured semantics. Kalasauskas D; Kosterhon M; Kurz E; Schmidt L; Altmann S; Grauhan NF; Sommer C; Othman A; Brockmann MA; Ringel F; Keric N Sci Rep; 2024 Sep; 14(1):20586. PubMed ID: 39232068 [TBL] [Abstract][Full Text] [Related]
28. Meningioma Consistency Can Be Defined by Combining the Radiomic Features of Magnetic Resonance Imaging and Ultrasound Elastography. A Pilot Study Using Machine Learning Classifiers. Cepeda S; Arrese I; García-García S; Velasco-Casares M; Escudero-Caro T; Zamora T; Sarabia R World Neurosurg; 2021 Feb; 146():e1147-e1159. PubMed ID: 33259973 [TBL] [Abstract][Full Text] [Related]
29. A radiomics nomogram for predicting the meningioma grade based on enhanced Duan C; Zhou X; Wang J; Li N; Liu F; Gao S; Liu X; Xu W Br J Radiol; 2022 Sep; 95(1137):20220141. PubMed ID: 35816518 [TBL] [Abstract][Full Text] [Related]
30. Automatic Prediction of Meningioma Grade Image Based on Data Amplification and Improved Convolutional Neural Network. Zhu H; Fang Q; He H; Hu J; Jiang D; Xu K Comput Math Methods Med; 2019; 2019():7289273. PubMed ID: 31662786 [TBL] [Abstract][Full Text] [Related]
31. Radiomic Features of the Edema Region May Contribute to Grading Meningiomas With Peritumoral Edema. Guo Z; Tian Z; Shi F; Xu P; Zhang J; Ling C; Zeng Q J Magn Reson Imaging; 2023 Jul; 58(1):301-310. PubMed ID: 36259547 [TBL] [Abstract][Full Text] [Related]
32. Deep learning and radiomics-based approach to meningioma grading: exploring the potential value of peritumoral edema regions. Zhang Z; Miao Y; Wu J; Zhang X; Ma Q; Bai H; Gao Q Phys Med Biol; 2024 Apr; 69(10):. PubMed ID: 38593827 [No Abstract] [Full Text] [Related]
33. A radiomics model enables prediction venous sinus invasion in meningioma. Wang L; Cao Y; Zhang G; Sun D; Zhou W; Li W; Zhou J; Chen K; Zhang J Ann Clin Transl Neurol; 2023 Aug; 10(8):1284-1295. PubMed ID: 37408500 [TBL] [Abstract][Full Text] [Related]
34. Lymph node metastasis prediction and biological pathway associations underlying DCE-MRI deep learning radiomics in invasive breast cancer. Liu W; Chen W; Xia J; Lu Z; Fu Y; Li Y; Tan Z BMC Med Imaging; 2024 Apr; 24(1):91. PubMed ID: 38627678 [TBL] [Abstract][Full Text] [Related]
35. A deep learning radiomics analysis for identifying sinus invasion in patients with meningioma before operation using tumor and peritumoral regions. Sun K; Zhang J; Liu Z; Qiu Q; Gao H; Liu P; Chen K; Wei W; Wang L; Zhang J; Zhou J; Tian J Eur J Radiol; 2022 Apr; 149():110187. PubMed ID: 35183900 [TBL] [Abstract][Full Text] [Related]
36. Deep-learning-based radiomics of intratumoral and peritumoral MRI images to predict the pathological features of adjuvant radiotherapy in early-stage cervical squamous cell carcinoma. Zhang XF; Wu HY; Liang XW; Chen JL; Li J; Zhang S; Liu Z BMC Womens Health; 2024 Mar; 24(1):182. PubMed ID: 38504245 [TBL] [Abstract][Full Text] [Related]
37. Ultrasound-based deep learning radiomics model for differentiating benign, borderline, and malignant ovarian tumours: a multi-class classification exploratory study. Du Y; Guo W; Xiao Y; Chen H; Yao J; Wu J BMC Med Imaging; 2024 Apr; 24(1):89. PubMed ID: 38622546 [TBL] [Abstract][Full Text] [Related]
38. Integrating MRI-based radiomics and clinicopathological features for preoperative prognostication of early-stage cervical adenocarcinoma patients: in comparison to deep learning approach. Qiu H; Wang M; Wang S; Li X; Wang D; Qin Y; Xu Y; Yin X; Hacker M; Han S; Li X Cancer Imaging; 2024 Aug; 24(1):101. PubMed ID: 39090668 [TBL] [Abstract][Full Text] [Related]
39. Deep Learning Features Improve the Performance of a Radiomics Signature for Predicting KRAS Status in Patients with Colorectal Cancer. Wu X; Li Y; Chen X; Huang Y; He L; Zhao K; Huang X; Zhang W; Huang Y; Li Y; Dong M; Huang J; Xia T; Liang C; Liu Z Acad Radiol; 2020 Nov; 27(11):e254-e262. PubMed ID: 31982342 [TBL] [Abstract][Full Text] [Related]
40. Preoperative Discrimination of CDKN2A/B Homozygous Deletion Status in Isocitrate Dehydrogenase-Mutant Astrocytoma: A Deep Learning-Based Radiomics Model Using MRI. Gao J; Liu Z; Pan H; Cao X; Kan Y; Wen Z; Chen S; Wen M; Zhang L J Magn Reson Imaging; 2024 May; 59(5):1655-1664. PubMed ID: 37555723 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]