BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31153567)

  • 1. High-attenuation artifact reduction in breast tomosynthesis using a novel reconstruction algorithm.
    Dustler M; Wicklein J; Förnvik H; Boita J; Bakic P; Lång K
    Eur J Radiol; 2019 Jul; 116():21-26. PubMed ID: 31153567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis.
    Zhang Y; Chan HP; Sahiner B; Wei J; Goodsitt MM; Hadjiiski LM; Ge J; Zhou C
    Med Phys; 2006 Oct; 33(10):3781-95. PubMed ID: 17089843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a constrained paired-view technique in iterative reconstruction for breast tomosynthesis.
    Wu G; Mainprize JG; Yaffe MJ
    Med Phys; 2013 Oct; 40(10):101901. PubMed ID: 24089903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving image quality for digital breast tomosynthesis: an automated detection and diffusion-based method for metal artifact reduction.
    Lu Y; Chan HP; Wei J; Hadjiiski LM; Samala RK
    Phys Med Biol; 2017 Sep; 62(19):7765-7783. PubMed ID: 28832336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.
    Kim YS; Park HS; Lee HH; Choi YW; Choi JG; Kim HH; Kim HJ
    Radiol Med; 2016 Feb; 121(2):81-92. PubMed ID: 26383027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a novel algorithm for metal artifact reduction in digital tomosynthesis using projection-based dual-energy material decomposition for arthroplasty: A phantom study.
    Gomi T; Sakai R; Goto M; Hara H; Watanabe Y
    Phys Med; 2018 Sep; 53():4-16. PubMed ID: 30241753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voting strategy for artifact reduction in digital breast tomosynthesis.
    Wu T; Moore RH; Kopans DB
    Med Phys; 2006 Jul; 33(7):2461-71. PubMed ID: 16898449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new projection correction based voting strategy for breast calcification artifact reduction.
    Tang H; Wang J; Sun L; Wang S; Xiang J; Xi Y; Chen Y; Jiang Y
    Phys Med Biol; 2023 Sep; 68(18):. PubMed ID: 37582378
    [No Abstract]   [Full Text] [Related]  

  • 9. Breast tomosynthesis using the multiple projection algorithm adapted for stationary detectors.
    Malliori A; Bliznakova K; Bliznakov Z; Cockmartin L; Bosmans H; Pallikarakis N
    J Xray Sci Technol; 2016; 24(1):23-41. PubMed ID: 26890907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced anatomical clutter in digital breast tomosynthesis with statistical iterative reconstruction.
    Garrett JW; Li Y; Li K; Chen GH
    Med Phys; 2018 May; 45(5):2009-2022. PubMed ID: 29542821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of digital breast tomosynthesis reconstruction algorithms using synchrotron radiation in standard geometry.
    Bliznakova K; Kolitsi Z; Speller RD; Horrocks JA; Tromba G; Pallikarakis N
    Med Phys; 2010 Apr; 37(4):1893-903. PubMed ID: 20443511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation and evaluation of an expectation maximization reconstruction algorithm for gamma emission breast tomosynthesis.
    Gong Z; Klanian K; Patel T; Sullivan O; Williams MB
    Med Phys; 2012 Dec; 39(12):7580-92. PubMed ID: 23231306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2017 Mar; 44(3):986-1001. PubMed ID: 28058719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-plane visibility of lesions using breast tomosynthesis and digital mammography.
    Timberg P; Båth M; Andersson I; Mattsson S; Tingberg A; Ruschin M
    Med Phys; 2010 Nov; 37(11):5618-26. PubMed ID: 21158273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of digital tomosynthesis reconstruction algorithms used to reduce metal artifacts for arthroplasty: A phantom study.
    Gomi T; Sakai R; Goto M; Hara H; Watanabe Y; Umeda T
    Phys Med; 2017 Oct; 42():28-38. PubMed ID: 29173918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weighted simultaneous algebraic reconstruction technique for tomosynthesis imaging of objects with high-attenuation features.
    Levakhina YM; Müller J; Duschka RL; Vogt F; Barkhausen J; Buzug TM
    Med Phys; 2013 Mar; 40(3):031106. PubMed ID: 23464286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a denoising convolutional neural network-based algorithm for metal artifact reduction in digital tomosynthesis for arthroplasty: A phantom study.
    Gomi T; Sakai R; Hara H; Watanabe Y; Mizukami S
    PLoS One; 2019; 14(9):e0222406. PubMed ID: 31518374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of reconstruction algorithms for C-arm mammography tomosynthesis.
    Rakowski JT; Dennis MJ
    Med Phys; 2006 Aug; 33(8):3018-32. PubMed ID: 16964880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a new image reconstruction method for digital breast tomosynthesis: effects on the visibility of breast lesions and breast density.
    Krammer J; Zolotarev S; Hillman I; Karalis K; Stsepankou D; Vengrinovich V; Hesser J; M Svahn T
    Br J Radiol; 2019 Nov; 92(1103):20190345. PubMed ID: 31453718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel pre-processing technique for improving image quality in digital breast tomosynthesis.
    Kim H; Lee T; Hong J; Sabir S; Lee JR; Choi YW; Kim HH; Chae EY; Cho S
    Med Phys; 2017 Feb; 44(2):417-425. PubMed ID: 28032909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.