These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31153877)

  • 1. sEMG-signal and IMU sensor-based gait sub-phase detection and prediction using a user-adaptive classifier.
    Ryu J; Lee BH; Maeng J; Kim DH
    Med Eng Phys; 2019 Jul; 69():50-57. PubMed ID: 31153877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IMU, sEMG, or their cross-correlation and temporal similarities: Which signal features detect lateral compensatory balance reactions more accurately?
    Nouredanesh M; Tung J
    Comput Methods Programs Biomed; 2019 Dec; 182():105003. PubMed ID: 31465977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intra-subject approach for gait-event prediction by neural network interpretation of EMG signals.
    Di Nardo F; Morbidoni C; Mascia G; Verdini F; Fioretti S
    Biomed Eng Online; 2020 Jul; 19(1):58. PubMed ID: 32723335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Low-Cost End-to-End sEMG-Based Gait Sub-Phase Recognition System.
    Luo R; Sun S; Zhang X; Tang Z; Wang W
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):267-276. PubMed ID: 31675333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. sEMG Based Gait Phase Recognition for Children with Spastic Cerebral Palsy.
    Wei PN; Xie R; Tang R; Li C; Kim J; Wu M
    Ann Biomed Eng; 2019 Jan; 47(1):223-230. PubMed ID: 30218222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Walking Intentions using sEMG and Mechanical sensors for various environment.
    Kyeong S; Shin W; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4414-4417. PubMed ID: 30441331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective recognition of human lower limb jump locomotion phases based on multi-sensor information fusion and machine learning.
    Lu Y; Wang H; Hu F; Zhou B; Xi H
    Med Biol Eng Comput; 2021 Apr; 59(4):883-899. PubMed ID: 33745104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EMG signal-based gait phase recognition using a GPES library and ISMF.
    Jaehwan Ryu ; Byeong-Hyeon Lee ; Deok-Hwan Kim
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2003-2006. PubMed ID: 28268723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methodology of surface electromyography in gait analysis: review of the literature.
    Papagiannis GI; Triantafyllou AI; Roumpelakis IM; Zampeli F; Garyfallia Eleni P; Koulouvaris P; Papadopoulos EC; Papagelopoulos PJ; Babis GC
    J Med Eng Technol; 2019 Jan; 43(1):59-65. PubMed ID: 31074312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-feature gait recognition with DNN based on sEMG signals.
    Yao T; Gao F; Zhang Q; Ma Y
    Math Biosci Eng; 2021 Apr; 18(4):3521-3542. PubMed ID: 34198399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locomotion Mode Recognition for Walking on Three Terrains Based on sEMG of Lower Limb and Back Muscles.
    Zhou H; Yang D; Li Z; Zhou D; Gao J; Guan J
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface muscle pressure as a measure of active and passive behavior of muscles during gait.
    Yungher DA; Wininger MT; Barr JB; Craelius W; Threlkeld AJ
    Med Eng Phys; 2011 May; 33(4):464-71. PubMed ID: 21176884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of walking speed variation-induced synchronized dynamic changes in lower limb joint angles and activity of trunk and lower limb muscles with a newly developed gait analysis system.
    Miura K; Kadone H; Koda M; Nakayama K; Kumagai H; Nagashima K; Mataki K; Fujii K; Noguchi H; Funayama T; Abe T; Suzuki K; Yamazaki M
    J Orthop Surg (Hong Kong); 2018; 26(3):2309499018806688. PubMed ID: 30352539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.
    Li Z; Wang B; Sun F; Yang C; Xie Q; Zhang W
    IEEE J Biomed Health Inform; 2014 May; 18(3):1043-50. PubMed ID: 24235314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Wearable System for Recognizing American Sign Language in Real-Time Using IMU and Surface EMG Sensors.
    Wu J; Sun L; Jafari R
    IEEE J Biomed Health Inform; 2016 Sep; 20(5):1281-1290. PubMed ID: 27576269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait Segmentation of Data Collected by Instrumented Shoes Using a Recurrent Neural Network Classifier.
    Prado A; Cao X; Robert MT; Gordon AM; Agrawal SK
    Phys Med Rehabil Clin N Am; 2019 May; 30(2):355-366. PubMed ID: 30954152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial Sensing for Gait Event Detection and Transfemoral Prosthesis Control Strategy.
    Ledoux ED
    IEEE Trans Biomed Eng; 2018 Dec; 65(12):2704-2712. PubMed ID: 29993444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation time determination for lower limb FES by using gait event and a "delay".
    Xueliang Bao ; Zhengyang Bi ; Xiaoying Lu ; Zhigong Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2462-2465. PubMed ID: 29060397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition.
    Hu Y; Wong Y; Wei W; Du Y; Kankanhalli M; Geng W
    PLoS One; 2018; 13(10):e0206049. PubMed ID: 30376567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine-Learning-Based Prediction of Gait Events From EMG in Cerebral Palsy Children.
    Morbidoni C; Cucchiarelli A; Agostini V; Knaflitz M; Fioretti S; Di Nardo F
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():819-830. PubMed ID: 33909568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.