BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31154004)

  • 1. New generation of nitric oxide-releasing porous materials: Assessment of their potential to regulate biological functions.
    Pinto RV; Fernandes AC; Antunes F; Lin Z; Rocha J; Pires J; Pinto ML
    Nitric Oxide; 2019 Sep; 90():29-36. PubMed ID: 31154004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Cellular Biological Functions Through the Controlled Release of NO from a Porous Ti-MOF.
    Pinto RV; Wang S; Tavares SR; Pires J; Antunes F; Vimont A; Clet G; Daturi M; Maurin G; Serre C; Pinto ML
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5135-5143. PubMed ID: 31951064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microporous titanosilicates Cu
    Pinto ML; Fernandes AC; Rocha J; Ferreira A; Antunes F; Pires J
    J Mater Chem B; 2014 Jan; 2(2):224-230. PubMed ID: 32261610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clay based materials for storage and therapeutic release of nitric oxide.
    Fernandes AC; Pinto ML; Antunes F; Pires J
    J Mater Chem B; 2013 Jul; 1(26):3287-3294. PubMed ID: 32261037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of nitric oxide-releasing microparticles for the mucosal delivery.
    Yoo JW; Lee JS; Lee CH
    J Biomed Mater Res A; 2010 Mar; 92(4):1233-43. PubMed ID: 19322879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide releasing Tygon materials: studies in donor leaching and localized nitric oxide release at a polymer-buffer interface.
    Joslin JM; Lantvit SM; Reynolds MM
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9285-94. PubMed ID: 23957655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rare example of a porous Ca-MOF for the controlled release of biologically active NO.
    Miller SR; Alvarez E; Fradcourt L; Devic T; Wuttke S; Wheatley PS; Steunou N; Bonhomme C; Gervais C; Laurencin D; Morris RE; Vimont A; Daturi M; Horcajada P; Serre C
    Chem Commun (Camb); 2013 Sep; 49(71):7773-5. PubMed ID: 23687655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric Oxide-Releasing Biomaterials for Biomedical Applications.
    Zhou X; Zhang J; Feng G; Shen J; Kong D; Zhao Q
    Curr Med Chem; 2016; 23(24):2579-2601. PubMed ID: 27480214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide delivery by core/shell superparamagnetic nanoparticle vehicles with enhanced biocompatibility.
    Zhang XF; Mansouri S; Mbeh DA; Yahia L; Sacher E; Veres T
    Langmuir; 2012 Sep; 28(35):12879-85. PubMed ID: 22892047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction and biofunctional evaluation of electrospun vascular graft loaded with selenocystamine for in situ catalytic generation of nitric oxide.
    Chen S; An J; Weng L; Li Y; Xu H; Wang Y; Ding D; Kong D; Wang S
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():491-6. PubMed ID: 25491855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in the development of nitric oxide-releasing biomaterials and their application potentials in chronic wound healing.
    Wu M; Lu Z; Wu K; Nam C; Zhang L; Guo J
    J Mater Chem B; 2021 Sep; 9(35):7063-7075. PubMed ID: 34109343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitamin B
    Pinto RV; Antunes F; Pires J; Graça V; Brandão P; Pinto ML
    Acta Biomater; 2017 Mar; 51():66-74. PubMed ID: 28093365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ordered mesoporous polymer-silica hybrid nanoparticles as vehicles for the intracellular controlled release of macromolecules.
    Kim TW; Slowing II; Chung PW; Lin VS
    ACS Nano; 2011 Jan; 5(1):360-6. PubMed ID: 21162552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-induced nitric oxide release from physiologically stable porous coordination polymers.
    Kim C; Diring S; Furukawa S; Kitagawa S
    Dalton Trans; 2015 Sep; 44(34):15324-33. PubMed ID: 26226560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparison of Different Approaches to Quantify Nitric Oxide Release from NO-Releasing Materials in Relevant Biological Media.
    V Pinto R; Antunes F; Pires J; Silva-Herdade A; Pinto ML
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32498254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustained release nitric oxide releasing nanoparticles: characterization of a novel delivery platform based on nitrite containing hydrogel/glass composites.
    Friedman AJ; Han G; Navati MS; Chacko M; Gunther L; Alfieri A; Friedman JM
    Nitric Oxide; 2008 Aug; 19(1):12-20. PubMed ID: 18457680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological properties of nanoporous folic acid materials and in vitro assessment of their biocompatibility.
    Zhou C; Kunzmann A; Rakonjac M; Fadeel B; Garcia-Bennett A
    Nanomedicine (Lond); 2012 Mar; 7(3):327-34. PubMed ID: 22111993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro.
    Huang X; Tao Z; Praskavich JC; Goswami A; Al-Sharab JF; Minko T; Polshettiwar V; Asefa T
    Langmuir; 2014 Sep; 30(36):10886-98. PubMed ID: 25188675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow release of NO by microporous titanosilicate ETS-4.
    Pinto ML; Rocha J; Gomes JR; Pires J
    J Am Chem Soc; 2011 Apr; 133(16):6396-402. PubMed ID: 21449590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-localized release of nitric oxide via sol-gel chemistry.
    Robbins ME; Schoenfisch MH
    J Am Chem Soc; 2003 May; 125(20):6068-9. PubMed ID: 12785832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.