BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31154069)

  • 1. Translational regulation and deregulation in erythropoiesis.
    Vatikioti A; Karkoulia E; Ioannou M; Strouboulis J
    Exp Hematol; 2019 Jul; 75():11-20. PubMed ID: 31154069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Widespread and dynamic translational control of red blood cell development.
    Alvarez-Dominguez JR; Zhang X; Hu W
    Blood; 2017 Feb; 129(5):619-629. PubMed ID: 27899360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity.
    Yien YY; Shi J; Chen C; Cheung JTM; Grillo AS; Shrestha R; Li L; Zhang X; Kafina MD; Kingsley PD; King MJ; Ablain J; Li H; Zon LI; Palis J; Burke MD; Bauer DE; Orkin SH; Koehler CM; Phillips JD; Kaplan J; Ward DM; Lodish HF; Paw BH
    J Biol Chem; 2018 Dec; 293(51):19797-19811. PubMed ID: 30366982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of erythroid 5-aminolevulinate synthase expression during erythropoiesis.
    Sadlon TJ; Dell'Oso T; Surinya KH; May BK
    Int J Biochem Cell Biol; 1999 Oct; 31(10):1153-67. PubMed ID: 10582344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A protective role of heme-regulated eIF2α kinase in cadmium-induced toxicity in erythroid cells.
    Wang L; Wang X; Zhang S; Qu G; Liu S
    Food Chem Toxicol; 2013 Dec; 62():880-91. PubMed ID: 24161693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of GATA1 levels in erythropoiesis.
    Gutiérrez L; Caballero N; Fernández-Calleja L; Karkoulia E; Strouboulis J
    IUBMB Life; 2020 Jan; 72(1):89-105. PubMed ID: 31769197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ineffective erythropoiesis and thalassemias.
    Rivella S
    Curr Opin Hematol; 2009 May; 16(3):187-94. PubMed ID: 19318943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HRI coordinates translation necessary for protein homeostasis and mitochondrial function in erythropoiesis.
    Zhang S; Macias-Garcia A; Ulirsch JC; Velazquez J; Butty VL; Levine SS; Sankaran VG; Chen JJ
    Elife; 2019 Apr; 8():. PubMed ID: 31033440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron metabolism: interactions with normal and disordered erythropoiesis.
    Ganz T; Nemeth E
    Cold Spring Harb Perspect Med; 2012 May; 2(5):a011668. PubMed ID: 22553501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p53 activation during ribosome biogenesis regulates normal erythroid differentiation.
    Le Goff S; Boussaid I; Floquet C; Raimbault A; Hatin I; Andrieu-Soler C; Salma M; Leduc M; Gautier EF; Guyot B; d'Allard D; Montel-Lehry N; Ducamp S; Houvert A; Guillonneau F; Giraudier S; Cramer-Bordé E; Morlé F; Diaz JJ; Hermine O; Taylor N; Kinet S; Verdier F; Padua RA; Mohandas N; Gleizes PE; Soler E; Mayeux P; Fontenay M
    Blood; 2021 Jan; 137(1):89-102. PubMed ID: 32818241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HRI coordinates translation by eIF2αP and mTORC1 to mitigate ineffective erythropoiesis in mice during iron deficiency.
    Zhang S; Macias-Garcia A; Velazquez J; Paltrinieri E; Kaufman RJ; Chen JJ
    Blood; 2018 Jan; 131(4):450-461. PubMed ID: 29101239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into the regulation of erythroid cells.
    Ingley E; Tilbrook PA; Klinken SP
    IUBMB Life; 2004 Apr; 56(4):177-84. PubMed ID: 15230344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine-Tuning of Cholesterol Homeostasis Controls Erythroid Differentiation.
    Lu Z; Huang L; Li Y; Xu Y; Zhang R; Zhou Q; Sun Q; Lu Y; Chen J; Shen Y; Li J; Zhao B
    Adv Sci (Weinh); 2022 Jan; 9(2):e2102669. PubMed ID: 34739188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythropoiesis in the absence of adult hemoglobin.
    Liu S; McConnell SC; Ryan TM
    Mol Cell Biol; 2013 Jun; 33(11):2241-51. PubMed ID: 23530053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancements of the production of bilirubin and the expression of β-globin by carbon monoxide during erythroid differentiation.
    Mu A; Li M; Tanaka M; Adachi Y; Tai TT; Liem PH; Izawa S; Furuyama K; Taketani S
    FEBS Lett; 2016 May; 590(10):1447-54. PubMed ID: 27087140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased PGC1β expression results in disrupted human erythroid differentiation, impaired hemoglobinization and cell cycle exit.
    Sen T; Chen J; Singbrant S
    Sci Rep; 2021 Aug; 11(1):17129. PubMed ID: 34429458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translational control by heme-regulated eIF2α kinase during erythropoiesis.
    Chen JJ
    Curr Opin Hematol; 2014 May; 21(3):172-8. PubMed ID: 24714526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein phosphatase 2A catalytic subunit α (PP2Acα) maintains survival of committed erythroid cells in fetal liver erythropoiesis through the STAT5 pathway.
    Chen W; Gu P; Jiang X; Ruan HB; Li C; Gao X
    Am J Pathol; 2011 May; 178(5):2333-43. PubMed ID: 21514445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bmi1 promotes erythroid development through regulating ribosome biogenesis.
    Gao R; Chen S; Kobayashi M; Yu H; Zhang Y; Wan Y; Young SK; Soltis A; Yu M; Vemula S; Fraenkel E; Cantor A; Antipin Y; Xu Y; Yoder MC; Wek RC; Ellis SR; Kapur R; Zhu X; Liu Y
    Stem Cells; 2015 Mar; 33(3):925-38. PubMed ID: 25385494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GATA factor switching during erythroid differentiation.
    Kaneko H; Shimizu R; Yamamoto M
    Curr Opin Hematol; 2010 May; 17(3):163-8. PubMed ID: 20216212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.