These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31154155)

  • 1. Influence of saline solution absorption and compressive rate on the material properties of brain tissue.
    McCarty AK; Zhang L; Hansen S; Jackson WJ; Bentil SA
    J Mech Behav Biomed Mater; 2019 Sep; 97():355-364. PubMed ID: 31154155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic properties of shock wave exposed brain tissue subjected to unconfined compression experiments.
    McCarty AK; Zhang L; Hansen S; Jackson WJ; Bentil SA
    J Mech Behav Biomed Mater; 2019 Dec; 100():103380. PubMed ID: 31446342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the mechanical behavior of degrading swine neural tissue at low strain rates via the fractional Zener constitutive model.
    Bentil SA; Dupaix RB
    J Mech Behav Biomed Mater; 2014 Feb; 30():83-90. PubMed ID: 24269943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressive properties and constitutive modeling of different regions of 8-week-old pediatric porcine brain under large strain and wide strain rates.
    Li Z; Yang H; Wang G; Han X; Zhang S
    J Mech Behav Biomed Mater; 2019 Jan; 89():122-131. PubMed ID: 30268868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rate- and Region-Dependent Mechanical Properties of Göttingen Minipig Brain Tissue in Simple Shear and Unconfined Compression.
    Boiczyk GM; Pearson N; Kote VB; Sundaramurthy A; Subramaniam DR; Rubio JE; Unnikrishnan G; Reifman J; Monson KL
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36524865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization of brain tissue in compression at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Jun; 10():23-38. PubMed ID: 22520416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of strain rate on indentation response of porcine brain.
    Qian L; Zhao H; Guo Y; Li Y; Zhou M; Yang L; Wang Z; Sun Y
    J Mech Behav Biomed Mater; 2018 Jun; 82():210-217. PubMed ID: 29621688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma.
    Farshad M; Barbezat M; Flüeler P; Schmidlin F; Graber P; Niederer P
    J Biomech; 1999 Apr; 32(4):417-25. PubMed ID: 10213032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressive mechanical characterization of non-human primate spinal cord white matter.
    Jannesar S; Allen M; Mills S; Gibbons A; Bresnahan JC; Salegio EA; Sparrey CJ
    Acta Biomater; 2018 Jul; 74():260-269. PubMed ID: 29729417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanical behavior of brain surrogates manufactured from silicone elastomers.
    Zhang L; Jackson WJ; Bentil SA
    J Mech Behav Biomed Mater; 2019 Jul; 95():180-190. PubMed ID: 31009902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive study on the mechanical properties of different regions of 8-week-old pediatric porcine brain under tension, shear, and compression at various strain rates.
    Li Z; Ji C; Li D; Luo R; Wang G; Jiang J
    J Biomech; 2020 Jan; 98():109380. PubMed ID: 31630775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency dependent viscoelastic properties of porcine brain tissue.
    Li W; Shepherd DET; Espino DM
    J Mech Behav Biomed Mater; 2020 Feb; 102():103460. PubMed ID: 31590055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of postmortem time and storage fluid on the material properties of bovine liver parenchyma in tension.
    Dunford KM; LeRoith T; Kemper AR
    J Mech Behav Biomed Mater; 2018 Nov; 87():240-255. PubMed ID: 30096512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of effects of friction on the deformation behavior of soft tissues in unconfined compression tests.
    Wu JZ; Dong RG; Schopper AW
    J Biomech; 2004 Jan; 37(1):147-55. PubMed ID: 14672579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic characterization of the porcine temporomandibular joint disc under unconfined compression.
    Allen KD; Athanasiou KA
    J Biomech; 2006; 39(2):312-22. PubMed ID: 16321633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Biphasic Transversely Isotropic Poroviscoelastic Model for the Unconfined Compression of Hydrated Soft Tissue.
    Hatami-Marbini H; Maulik R
    J Biomech Eng; 2016 Mar; 138(3):4032059. PubMed ID: 26593630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preservatives for postmortem brain tissue in biomechanical testing: A pilot study.
    Mallory A; Wetli A; Neuroth LM; Rhule H; Moorhouse K; Satterfield K; Thomas C; Tesny A; Kang YS
    J Anat; 2024 Sep; 245(3):501-509. PubMed ID: 39010676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature effects on brain tissue in compression.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Oct; 14():113-8. PubMed ID: 23022565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear properties of the temporomandibular joint disc in relation to compressive and shear strain.
    Tanaka E; Kawai N; Hanaoka K; Van Eijden T; Sasaki A; Aoyama J; Tanaka M; Tanne K
    J Dent Res; 2004 Jun; 83(6):476-9. PubMed ID: 15153455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation.
    Yao W; Yoshida K; Fernandez M; Vink J; Wapner RJ; Ananth CV; Oyen ML; Myers KM
    J Mech Behav Biomed Mater; 2014 Jun; 34():18-26. PubMed ID: 24548950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.