These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31154176)

  • 1. Formation, classification and identification of non-extractable residues of
    Claßen D; Siedt M; Nguyen KT; Ackermann J; Schaeffer A
    Chemosphere; 2019 Oct; 232():164-170. PubMed ID: 31154176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate and behavior of
    Claßen D; Ackermann J; Schaeffer A
    Sci Total Environ; 2021 May; 768():144970. PubMed ID: 33736300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of chemical charge on the fate of organic chemicals in sediment particle size fractions.
    Holzmann H; Simeoni A; Schäffer A
    Chemosphere; 2021 Feb; 265():129105. PubMed ID: 33261835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fate of
    Holzmann H; Claßen D; Ackermann J; Schäffer A
    Chemosphere; 2022 Sep; 303(Pt 1):134885. PubMed ID: 35595110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate of pendimethalin in soil and characterization of non-extractable residues (NER).
    Luks AK; Zegarski T; Nowak KM; Miltner A; Kästner M; Matthies M; Schmidt B; Schäffer A
    Sci Total Environ; 2021 Jan; 753():141870. PubMed ID: 33207453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of different versions of simulation studies following OECD 309 using
    Holzmann H; Prehm MS; Schäffer A
    Sci Total Environ; 2021 Jan; 753():142101. PubMed ID: 33207483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate of phenanthrene and mineralization of its non-extractable residues in an oxic soil.
    Wang Y; Xu J; Shan J; Ma Y; Ji R
    Environ Pollut; 2017 May; 224():377-383. PubMed ID: 28216135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of temperature, pH and total organic carbon variations on microbial turnover of
    Muskus AM; Krauss M; Miltner A; Hamer U; Nowak KM
    Sci Total Environ; 2019 Mar; 658():697-707. PubMed ID: 30580222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A unified approach for including non-extractable residues (NER) of chemicals and pesticides in the assessment of persistence.
    Schäffer A; Kästner M; Trapp S
    Environ Sci Eur; 2018; 30(1):51. PubMed ID: 30613459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of non-extractable residues in soils: Towards a standardised approach.
    Loeffler D; Hatz A; Albrecht D; Fligg M; Hogeback J; Ternes TA
    Environ Pollut; 2020 Apr; 259():113826. PubMed ID: 31887596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling microbial turnover and non-extractable residues of bromoxynil in soil microcosms with
    Nowak KM; Telscher M; Seidel E; Miltner A
    Environ Pollut; 2018 Nov; 242(Pt A):769-777. PubMed ID: 30031310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of glyphosate in a Colombian soil is influenced by temperature, total organic carbon content and pH.
    Muskus AM; Krauss M; Miltner A; Hamer U; Nowak KM
    Environ Pollut; 2020 Apr; 259():113767. PubMed ID: 31887598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inoculation of soil with an Isoproturon degrading microbial community reduced the pool of "real non-extractable" Isoproturon residues.
    Zhu X; Schroll R; Dörfler U; Chen B
    Ecotoxicol Environ Saf; 2018 Mar; 149():182-189. PubMed ID: 29175344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Assessment of Soil Nonextractable Residues of the Pyrethroid Insecticide Cyphenothrin.
    Okuda K; Ando D; Suzuki Y; Fujisawa T
    J Agric Food Chem; 2023 Jun; 71(25):9687-9695. PubMed ID: 37319355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Release of tetrabromobisphenol A (TBBPA)-derived non-extractable residues in oxic soil and the effects of the TBBPA-degrading bacterium Ochrobactrum sp. strain T.
    Wang S; Ling X; Wu X; Wang L; Li G; Corvini PF; Sun F; Ji R
    J Hazard Mater; 2019 Oct; 378():120666. PubMed ID: 31202065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and fate of bound residues from microbial biomass during 2,4-D degradation in soil.
    Nowak KM; Miltner A; Gehre M; Schäffer A; Kästner M
    Environ Sci Technol; 2011 Feb; 45(3):999-1006. PubMed ID: 21186826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of microorganisms to non-extractable residue formation during biodegradation of ibuprofen in soil.
    Nowak KM; Girardi C; Miltner A; Gehre M; Schäffer A; Kästner M
    Sci Total Environ; 2013 Feb; 445-446():377-84. PubMed ID: 23361042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of kinetic modeling to predict the fate of two indoxacarb metabolites and their bound residues in soil.
    Zhang M; Whiting SA; Clark BJ
    Sci Total Environ; 2017 Dec; 607-608():829-837. PubMed ID: 28711844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (Multiple) Isotope probing approaches to trace the fate of environmental chemicals and the formation of non-extractable 'bound' residues.
    Kästner M; Nowak KM; Miltner A; Schäffer A
    Curr Opin Biotechnol; 2016 Oct; 41():73-82. PubMed ID: 27258395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial degradation of the pharmaceutical ibuprofen and the herbicide 2,4-D in water and soil - use and limits of data obtained from aqueous systems for predicting their fate in soil.
    Girardi C; Nowak KM; Carranza-Diaz O; Lewkow B; Miltner A; Gehre M; Schäffer A; Kästner M
    Sci Total Environ; 2013 Feb; 444():32-42. PubMed ID: 23262323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.