These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 31154180)
1. Biodegradation of tricresyl phosphate isomers by Brevibacillus brevis: Degradation pathway and metabolic mechanism. Liu Y; Yin H; Wei K; Peng H; Lu G; Dang Z Chemosphere; 2019 Oct; 232():195-203. PubMed ID: 31154180 [TBL] [Abstract][Full Text] [Related]
2. Biodegradation of tricresyl phosphates isomers by a novel microbial consortium and the toxicity evaluation of its major products. Yu Y; Mo W; Zhu X; Yu X; Sun J; Deng F; Jin L; Yin H; Zhu L Sci Total Environ; 2022 Jul; 828():154415. PubMed ID: 35276152 [TBL] [Abstract][Full Text] [Related]
3. Bioremediation of triphenyl phosphate by Brevibacillus brevis: Degradation characteristics and role of cytochrome P450 monooxygenase. Wei K; Yin H; Peng H; Lu G; Dang Z Sci Total Environ; 2018 Jun; 627():1389-1395. PubMed ID: 30857102 [TBL] [Abstract][Full Text] [Related]
4. Tea saponin enhanced biodegradation of decabromodiphenyl ether by Brevibacillus brevis. Tang S; Bai J; Yin H; Ye J; Peng H; Liu Z; Dang Z Chemosphere; 2014 Nov; 114():255-61. PubMed ID: 25113210 [TBL] [Abstract][Full Text] [Related]
5. Bioremediation of triphenyl phosphate in river water microcosms: Proteome alteration of Brevibacillus brevis and cytotoxicity assessments. Wei K; Yin H; Peng H; Lu G; Dang Z Sci Total Environ; 2019 Feb; 649():563-570. PubMed ID: 30176467 [TBL] [Abstract][Full Text] [Related]
6. Biosorption and degradation of decabromodiphenyl ether by Brevibacillus brevis and the influence of decabromodiphenyl ether on cellular metabolic responses. Wang L; Tang L; Wang R; Wang X; Ye J; Long Y Environ Sci Pollut Res Int; 2016 Mar; 23(6):5166-78. PubMed ID: 26555880 [TBL] [Abstract][Full Text] [Related]
7. Tricresyl phosphate isomers exert estrogenic effects via G protein-coupled estrogen receptor-mediated pathways. Ji X; Li N; Ma M; Rao K; Yang R; Wang Z Environ Pollut; 2020 Sep; 264():114747. PubMed ID: 32559878 [TBL] [Abstract][Full Text] [Related]
8. Translocation and metabolism of tricresyl phosphate in rice and microbiome system: Isomer-specific processes and overlooked metabolites. Yu Y; Huang J; Jin L; Yu M; Yu X; Zhu X; Sun J; Zhu L Environ Int; 2023 Feb; 172():107793. PubMed ID: 36739853 [TBL] [Abstract][Full Text] [Related]
9. Metabolic and proteomic mechanism of benzo[a]pyrene degradation by Brevibacillus brevis. Zhu Y; Chen K; Ding Y; Situ D; Li Y; Long Y; Wang L; Ye J Ecotoxicol Environ Saf; 2019 May; 172():1-10. PubMed ID: 30665150 [TBL] [Abstract][Full Text] [Related]
10. Triphenyltin biodegradation and intracellular material release by Brevibacillus brevis. Ye J; Zhao H; Yin H; Peng H; Tang L; Gao J; Ma Y Chemosphere; 2014 Jun; 105():62-7. PubMed ID: 24388446 [TBL] [Abstract][Full Text] [Related]
11. Occupational exposure of air crews to tricresyl phosphate isomers and organophosphate flame retardants after fume events. Schindler BK; Weiss T; Schütze A; Koslitz S; Broding HC; Bünger J; Brüning T Arch Toxicol; 2013 Apr; 87(4):645-8. PubMed ID: 23179756 [TBL] [Abstract][Full Text] [Related]
12. In vitro neurotoxic hazard characterization of different tricresyl phosphate (TCP) isomers and mixtures. Duarte DJ; Rutten JMM; van den Berg M; Westerink RHS Neurotoxicology; 2017 Mar; 59():222-230. PubMed ID: 26851706 [TBL] [Abstract][Full Text] [Related]
13. Determination of ortho-cresyl phosphate isomers of tricresyl phosphate used in aircraft turbine engine oils by gas chromatography and mass spectrometry. De Nola G; Kibby J; Mazurek W J Chromatogr A; 2008 Jul; 1200(2):211-6. PubMed ID: 18550071 [TBL] [Abstract][Full Text] [Related]
14. Assessment of neurotoxic effects of tri-cresyl phosphates (TCPs) and cresyl saligenin phosphate (CBDP) using a combination of in vitro techniques. Hausherr V; Schöbel N; Liebing J; van Thriel C Neurotoxicology; 2017 Mar; 59():210-221. PubMed ID: 27288108 [TBL] [Abstract][Full Text] [Related]
15. Biosorption and biodegradation of pyrene by Brevibacillus brevis and cellular responses to pyrene treatment. Liao L; Chen S; Peng H; Yin H; Ye J; Liu Z; Dang Z; Liu Z Ecotoxicol Environ Saf; 2015 May; 115():166-73. PubMed ID: 25700095 [TBL] [Abstract][Full Text] [Related]
16. Biosorption and biodegradation of triphenyltin by Brevibacillus brevis. Ye J; Yin H; Peng H; Bai J; Xie D; Wang L Bioresour Technol; 2013 Feb; 129():236-41. PubMed ID: 23247152 [TBL] [Abstract][Full Text] [Related]
17. [Biodegradation of Pyrene by Intact Cells and Spores of Brevibacillus brevis]. Liu ZC; Ye JS; Peng H; Liu ZH; Deng TJ; Yin H; Liao LP Huan Jing Ke Xue; 2015 May; 36(5):1763-8. PubMed ID: 26314128 [TBL] [Abstract][Full Text] [Related]
18. Health risk assessment of exposure to TriCresyl Phosphates (TCPs) in aircraft: a commentary. de Ree H; van den Berg M; Brand T; Mulder GJ; Simons R; Veldhuijzen van Zanten B; Westerink RH Neurotoxicology; 2014 Dec; 45():209-15. PubMed ID: 25193069 [TBL] [Abstract][Full Text] [Related]
19. Comparison of polylactic acid biodegradation ability of Brevibacillus brevis and Bacillus amyloliquefaciens and promotion of PLA biodegradation by soytone. Yu J; Kim PD; Jang Y; Kim SK; Han J; Min J Biodegradation; 2022 Oct; 33(5):477-487. PubMed ID: 35788449 [TBL] [Abstract][Full Text] [Related]
20. Metabolism and disposition of the flame retardant plasticizer, tri-p-cresyl phosphate, in the rat. Kurebayashi H; Tanaka A; Yamaha T Toxicol Appl Pharmacol; 1985 Mar; 77(3):395-404. PubMed ID: 3919466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]