These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 31154186)
21. Simultaneous removal of Sb(III) and Sb(V) from mining wastewater by reduced graphene oxide/bimetallic nanoparticles. Chen W; Lin Z; Chen Z; Weng X; Owens G; Chen Z Sci Total Environ; 2022 Aug; 836():155704. PubMed ID: 35523350 [TBL] [Abstract][Full Text] [Related]
22. Coal-based bottom ash (CBBA) waste material as adsorbent for removal of textile dyestuffs from aqueous solution. Dinçer AR; Güneş Y; Karakaya N J Hazard Mater; 2007 Mar; 141(3):529-35. PubMed ID: 16978765 [TBL] [Abstract][Full Text] [Related]
23. Simultaneous removal of arsenic and antimony from mining wastewater using granular TiO Qiu S; Yan L; Jing C J Environ Sci (China); 2019 Jan; 75():269-276. PubMed ID: 30473292 [TBL] [Abstract][Full Text] [Related]
24. An improved method for removal of azo dye orange II from textile effluent using albumin as sorbent. Ohashi T; Jara AM; Batista AC; Franco LO; Barbosa Lima MA; Benachour M; Alves da Silva CA; Campos-Takaki GM Molecules; 2012 Nov; 17(12):14219-29. PubMed ID: 23201641 [TBL] [Abstract][Full Text] [Related]
25. Electrocoagulation of blue reactive, red disperse and mixed dyes, and application in treating textile effluent. Phalakornkule C; Polgumhang S; Tongdaung W; Karakat B; Nuyut T J Environ Manage; 2010; 91(4):918-26. PubMed ID: 20042267 [TBL] [Abstract][Full Text] [Related]
26. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation. Tang S; Yuan D; Zhang Q; Liu Y; Zhang Q; Liu Z; Huang H Environ Sci Pollut Res Int; 2016 Sep; 23(18):18800-8. PubMed ID: 27316651 [TBL] [Abstract][Full Text] [Related]
27. Removal of Sb(V) from complex wastewater of Sb(V) and aniline aerofloat using Fe Wang X; Deng R; Wang C; Long P; Hou B; Chen W; Chen F; Ren B; Hursthouse A J Environ Manage; 2024 Aug; 365():121610. PubMed ID: 38955048 [TBL] [Abstract][Full Text] [Related]
28. Removal of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) from wastewaters by zero-valent iron (ZVI): predominant removal mechanism for effective SDBS removal. Takayanagi A; Kobayashi M; Kawase Y Environ Sci Pollut Res Int; 2017 Mar; 24(9):8087-8097. PubMed ID: 28138885 [TBL] [Abstract][Full Text] [Related]
29. Preparation of cationic waste paper and its application in poisonous dye removal. Yang F; Song X; Yan L Water Sci Technol; 2013; 67(11):2560-7. PubMed ID: 23752389 [TBL] [Abstract][Full Text] [Related]
30. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Zhang G; Qu J; Liu H; Liu R; Wu R Water Res; 2007 May; 41(9):1921-8. PubMed ID: 17382991 [TBL] [Abstract][Full Text] [Related]
31. Effect of chloride on the one step electrochemical treatment of an industrial textile wastewater with tin dioxide anodes. The case of trichromy procion HEXL. Orts F; Bonastre J; Fernández J; Cases F Chemosphere; 2020 Apr; 245():125396. PubMed ID: 31784183 [TBL] [Abstract][Full Text] [Related]
32. Mutual effects behind the simultaneous removal of toxic metals and cationic dyes by interlayer-expanded MoS Wu Z; Duan Q; Li X; Li J Environ Sci Pollut Res Int; 2019 Oct; 26(30):31344-31353. PubMed ID: 31471849 [TBL] [Abstract][Full Text] [Related]
33. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. Natarajan S; Bajaj HC; Tayade RJ J Environ Sci (China); 2018 Mar; 65():201-222. PubMed ID: 29548392 [TBL] [Abstract][Full Text] [Related]
34. Adsorption of Oxyanions from Industrial Wastewater using Perlite-Supported Magnetite. Verbinnen B; Block C; Vandecasteele C Water Environ Res; 2016 May; 88(5):408-14. PubMed ID: 26488866 [TBL] [Abstract][Full Text] [Related]
35. Competitive adsorption and desorption of arsenate, vanadate, and molybdate onto the low-cost adsorbent materials alum water treatment sludge and bauxite. Hua T; Haynes RJ; Zhou YF Environ Sci Pollut Res Int; 2018 Dec; 25(34):34053-34062. PubMed ID: 30280345 [TBL] [Abstract][Full Text] [Related]
36. Enhanced removal of hazardous dye form aqueous solutions and real textile wastewater using bifunctional chitin/lignin biosorbent. Wawrzkiewicz M; Bartczak P; Jesionowski T Int J Biol Macromol; 2017 Jun; 99():754-764. PubMed ID: 28283458 [TBL] [Abstract][Full Text] [Related]
37. Conversion of tannery solid waste to an adsorbent for high-efficiency dye removal from tannery wastewater: A road to circular utilization. Tang Y; Zhao J; Zhang Y; Zhou J; Shi B Chemosphere; 2021 Jan; 263():127987. PubMed ID: 32835980 [TBL] [Abstract][Full Text] [Related]
38. Ultrafast and simultaneous removal of anionic and cationic dyes by nanodiamond/UiO-66 hybrid nanocomposite. Molavi H; Neshastehgar M; Shojaei A; Ghashghaeinejad H Chemosphere; 2020 May; 247():125882. PubMed ID: 32069713 [TBL] [Abstract][Full Text] [Related]
39. Simultaneous and efficient removal of multiple heavy metal(loid)s from aqueous solutions using Fe/Mn (hydr)oxide and phosphate mineral composites synthesized by regulating the proportion of Fe(II), Fe(III), Mn(II) and PO Xu R; Li Q; Liao L; Wu Z; Yin Z; Yang Y; Jiang T J Hazard Mater; 2022 Sep; 438():129481. PubMed ID: 35803195 [TBL] [Abstract][Full Text] [Related]
40. Preparation and characterization of iron-copper binary oxide and its effective removal of antimony(III) from aqueous solution. Li Y; Geng B; Hu X; Ren B; Hursthouse AS Water Sci Technol; 2016; 74(2):393-401. PubMed ID: 27438244 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]