These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 31154232)
1. Evaluation of predictive capabilities of ordinary geostatistical interpolation, hybrid interpolation, and machine learning methods for estimating PM Requia WJ; Coull BA; Koutrakis P Environ Res; 2019 Aug; 175():421-433. PubMed ID: 31154232 [TBL] [Abstract][Full Text] [Related]
2. The influence of spatial patterning on modeling PM Requia WJ; Coull BA; Koutrakis P Sci Total Environ; 2019 Sep; 682():247-258. PubMed ID: 31121351 [TBL] [Abstract][Full Text] [Related]
3. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
4. Multivariate spatial patterns of ambient PM Requia WJ; Coull BA; Koutrakis P Environ Pollut; 2019 Sep; 252(Pt B):1942-1952. PubMed ID: 31227351 [TBL] [Abstract][Full Text] [Related]
5. Comparison of geostatistical interpolation and remote sensing techniques for estimating long-term exposure to ambient PM2.5 concentrations across the continental United States. Lee SJ; Serre ML; van Donkelaar A; Martin RV; Burnett RT; Jerrett M Environ Health Perspect; 2012 Dec; 120(12):1727-32. PubMed ID: 23033456 [TBL] [Abstract][Full Text] [Related]
6. A land use regression model using machine learning and locally developed low cost particulate matter sensors in Uganda. Coker ES; Amegah AK; Mwebaze E; Ssematimba J; Bainomugisha E Environ Res; 2021 Aug; 199():111352. PubMed ID: 34043968 [TBL] [Abstract][Full Text] [Related]
7. A machine learning method to estimate PM Chen G; Li S; Knibbs LD; Hamm NAS; Cao W; Li T; Guo J; Ren H; Abramson MJ; Guo Y Sci Total Environ; 2018 Sep; 636():52-60. PubMed ID: 29702402 [TBL] [Abstract][Full Text] [Related]
8. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis. Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ; Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM Xu Y; Ho HC; Wong MS; Deng C; Shi Y; Chan TC; Knudby A Environ Pollut; 2018 Nov; 242(Pt B):1417-1426. PubMed ID: 30142557 [TBL] [Abstract][Full Text] [Related]
10. Exposure inequality assessment for PM Ouyang W; Gao B; Cheng H; Hao Z; Wu N Sci Total Environ; 2018 Sep; 635():769-778. PubMed ID: 29710600 [TBL] [Abstract][Full Text] [Related]
11. Spatiotemporal modeling of PM Chen L; Gao S; Zhang H; Sun Y; Ma Z; Vedal S; Mao J; Bai Z Environ Int; 2018 Jul; 116():300-307. PubMed ID: 29730578 [TBL] [Abstract][Full Text] [Related]
12. A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States. Beckerman BS; Jerrett M; Serre M; Martin RV; Lee SJ; van Donkelaar A; Ross Z; Su J; Burnett RT Environ Sci Technol; 2013 Jul; 47(13):7233-41. PubMed ID: 23701364 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Personal and Home Characteristics Associated with the Elemental Composition of PM2.5 in Indoor, Outdoor, and Personal Air in the RIOPA Study. Ryan PH; Brokamp C; Fan ZH; Rao MB Res Rep Health Eff Inst; 2015 Dec; (185):3-40. PubMed ID: 26934775 [TBL] [Abstract][Full Text] [Related]
14. A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide. Chen J; de Hoogh K; Gulliver J; Hoffmann B; Hertel O; Ketzel M; Bauwelinck M; van Donkelaar A; Hvidtfeldt UA; Katsouyanni K; Janssen NAH; Martin RV; Samoli E; Schwartz PE; Stafoggia M; Bellander T; Strak M; Wolf K; Vienneau D; Vermeulen R; Brunekreef B; Hoek G Environ Int; 2019 Sep; 130():104934. PubMed ID: 31229871 [TBL] [Abstract][Full Text] [Related]
15. Space-time trends of PM Meng X; Hand JL; Schichtel BA; Liu Y Environ Int; 2018 Dec; 121(Pt 2):1137-1147. PubMed ID: 30413295 [TBL] [Abstract][Full Text] [Related]
16. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents. Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238 [TBL] [Abstract][Full Text] [Related]
17. The London low emission zone baseline study. Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924 [TBL] [Abstract][Full Text] [Related]
18. Improve ground-level PM Liu Y; Cao G; Zhao N; Mulligan K; Ye X Environ Pollut; 2018 Apr; 235():272-282. PubMed ID: 29291527 [TBL] [Abstract][Full Text] [Related]
19. Using a land use regression model with machine learning to estimate ground level PM Wong PY; Lee HY; Chen YC; Zeng YT; Chern YR; Chen NT; Candice Lung SC; Su HJ; Wu CD Environ Pollut; 2021 May; 277():116846. PubMed ID: 33735646 [TBL] [Abstract][Full Text] [Related]