These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 31154590)
1. Semi-rational design of cellobiose dehydrogenase for increased stability in the presence of peroxide. Balaž AM; Stevanović J; Ostafe R; Blazić M; Ilić Đurđić K; Fischer R; Prodanović R Mol Divers; 2020 Aug; 24(3):593-601. PubMed ID: 31154590 [TBL] [Abstract][Full Text] [Related]
2. Production and characterization of recombinant Phanerochaete chrysosporium cellobiose dehydrogenase in the methylotrophic yeast Pichia pastoris. Yoshida M; Ohira T; Igarashi K; Nagasawa H; Aida K; Hallberg BM; Divne C; Nishino T; Samejima M Biosci Biotechnol Biochem; 2001 Sep; 65(9):2050-7. PubMed ID: 11676020 [TBL] [Abstract][Full Text] [Related]
3. Semi-rational engineering of cellobiose dehydrogenase for improved hydrogen peroxide production. Sygmund C; Santner P; Krondorfer I; Peterbauer CK; Alcalde M; Nyanhongo GS; Guebitz GM; Ludwig R Microb Cell Fact; 2013 Apr; 12():38. PubMed ID: 23617537 [TBL] [Abstract][Full Text] [Related]
4. Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium. Igarashi K; Yoshida M; Matsumura H; Nakamura N; Ohno H; Samejima M; Nishino T FEBS J; 2005 Jun; 272(11):2869-77. PubMed ID: 15943818 [TBL] [Abstract][Full Text] [Related]
6. Kinetics and reactivity of the flavin and heme cofactors of cellobiose dehydrogenase from Phanerochaete chrysosporium. Cameron MD; Aust SD Biochemistry; 2000 Nov; 39(44):13595-601. PubMed ID: 11063597 [TBL] [Abstract][Full Text] [Related]
7. Role of the flavin domain residues, His689 and Asn732, in the catalytic mechanism of cellobiose dehydrogenase from phanerochaete chrysosporium. Rotsaert FA; Renganathan V; Gold MH Biochemistry; 2003 Apr; 42(14):4049-56. PubMed ID: 12680758 [TBL] [Abstract][Full Text] [Related]
8. Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida. Tasca F; Gorton L; Harreither W; Haltrich D; Ludwig R; Nöll G Anal Chem; 2009 Apr; 81(7):2791-8. PubMed ID: 19256522 [TBL] [Abstract][Full Text] [Related]
9. Cloning and characterization of a thermostable cellobiose dehydrogenase from Sporotrichum thermophile. Subramaniam SS; Nagalla SR; Renganathan V Arch Biochem Biophys; 1999 May; 365(2):223-30. PubMed ID: 10328816 [TBL] [Abstract][Full Text] [Related]
10. Site-directed mutagenesis of the heme axial ligands in the hemoflavoenzyme cellobiose dehydrogenase. Rotsaert FA; Li B; Renganathan V; Gold MH Arch Biochem Biophys; 2001 Jun; 390(2):206-14. PubMed ID: 11396923 [TBL] [Abstract][Full Text] [Related]
11. Amino acid substitution at the substrate-binding subsite alters the specificity of the Phanerochaete chrysosporium cellobiose dehydrogenase. Desriani ; Ferri S; Sode K Biochem Biophys Res Commun; 2010 Jan; 391(2):1246-50. PubMed ID: 20120044 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of the reductive half-reaction in cellobiose dehydrogenase. Hallberg BM; Henriksson G; Pettersson G; Vasella A; Divne C J Biol Chem; 2003 Feb; 278(9):7160-6. PubMed ID: 12493734 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical oxidation of water by a cellobiose dehydrogenase from Phanerochaete chrysosporium. Feng J; Himmel ME; Decker SR Biotechnol Lett; 2005 Apr; 27(8):555-60. PubMed ID: 15973489 [TBL] [Abstract][Full Text] [Related]
14. Cellobiose dehydrogenase from the fungi Phanerochaete chrysosporium and Humicola insolens. A flavohemoprotein from Humicola insolens contains 6-hydroxy-FAD as the dominant active cofactor. Igarashi K; Verhagen MF; Samejima M; Schülein M; Eriksson KE; Nishino T J Biol Chem; 1999 Feb; 274(6):3338-44. PubMed ID: 9920875 [TBL] [Abstract][Full Text] [Related]
15. Heterologous expression of Phanerochaete chrysosporium cellobiose dehydrogenase in Trichoderma reesei. Wohlschlager L; Csarman F; Chang H; Fitz E; Seiboth B; Ludwig R Microb Cell Fact; 2021 Jan; 20(1):2. PubMed ID: 33407462 [TBL] [Abstract][Full Text] [Related]
16. Direct electrochemistry of Phanerochaete chrysosporium cellobiose dehydrogenase covalently attached onto gold nanoparticle modified solid gold electrodes. Matsumura H; Ortiz R; Ludwig R; Igarashi K; Samejima M; Gorton L Langmuir; 2012 Jul; 28(29):10925-33. PubMed ID: 22746277 [TBL] [Abstract][Full Text] [Related]
17. Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Bao W; Usha SN; Renganathan V Arch Biochem Biophys; 1993 Feb; 300(2):705-13. PubMed ID: 8434950 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical evidence of self-substrate inhibition as functions regulation for cellobiose dehydrogenase from Phanerochaete chrysosporium. Stoica L; Ruzgas T; Gorton L Bioelectrochemistry; 2009 Sep; 76(1-2):42-52. PubMed ID: 19640808 [TBL] [Abstract][Full Text] [Related]
19. Production of cellobiose dehydrogenase from a newly isolated white rot fungus Termitomyces sp. OE147. Gupta G; Gangwar R; Gautam A; Kumar L; Dhariwal A; Sahai V; Mishra S Appl Biochem Biotechnol; 2014 Aug; 173(8):2099-115. PubMed ID: 24929309 [TBL] [Abstract][Full Text] [Related]
20. Biophysical and structural analysis of a novel heme B iron ligation in the flavocytochrome cellobiose dehydrogenase. Rotsaert FA; Hallberg BM; de Vries S; Moenne-Loccoz P; Divne C; Renganathan V; Gold MH J Biol Chem; 2003 Aug; 278(35):33224-31. PubMed ID: 12796496 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]