These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31154771)

  • 1. Chaos, synchronization, and desynchronization in a liquid-fueled diffusion-flame combustor with an intrinsic hydrodynamic mode.
    Guan Y; Li LKB; Ahn B; Kim KT
    Chaos; 2019 May; 29(5):053124. PubMed ID: 31154771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigation of limit cycle oscillations in a turbulent thermoacoustic system via delayed acoustic self-feedback.
    Sahay A; Kushwaha A; Pawar SA; P R M; Dhadphale JM; Sujith RI
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutual synchronization of two flame-driven thermoacoustic oscillators: Dissipative and time-delayed coupling effects.
    Moon K; Guan Y; Li LKB; Kim KT
    Chaos; 2020 Feb; 30(2):023110. PubMed ID: 32113251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating thermoacoustic instability mitigation dynamics with a Kuramoto model for flamelet oscillators.
    Dutta AK; Ramachandran G; Chaudhuri S
    Phys Rev E; 2019 Mar; 99(3-1):032215. PubMed ID: 30999463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strange nonchaotic and chaotic attractors in a self-excited thermoacoustic oscillator subjected to external periodic forcing.
    Guan Y; Murugesan M; Li LKB
    Chaos; 2018 Sep; 28(9):093109. PubMed ID: 30278637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical systems approach to study thermoacoustic transitions in a liquid rocket combustor.
    Kasthuri P; Pavithran I; Pawar SA; Sujith RI; Gejji R; Anderson W
    Chaos; 2019 Oct; 29(10):103115. PubMed ID: 31675825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal patterns corresponding to phase synchronization and generalized synchronization states of thermoacoustic instability.
    Pawar SA; Raghunath MP; K Valappil R; Krishnan A; Manoj K; Sujith RI
    Chaos; 2024 May; 34(5):. PubMed ID: 38717395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the emergence of critical regions at the onset of thermoacoustic instability in a turbulent combustor.
    Unni VR; Krishnan A; Manikandan R; George NB; Sujith RI; Marwan N; Kurths J
    Chaos; 2018 Jun; 28(6):063125. PubMed ID: 29960406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaos in an imperfectly premixed model combustor.
    Kabiraj L; Saurabh A; Karimi N; Sailor A; Mastorakos E; Dowling AP; Paschereit CO
    Chaos; 2015 Feb; 25(2):023101. PubMed ID: 25725637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Route to chaos for combustion instability in ducted laminar premixed flames.
    Kabiraj L; Saurabh A; Wahi P; Sujith RI
    Chaos; 2012 Jun; 22(2):023129. PubMed ID: 22757536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural ODE to model and prognose thermoacoustic instability.
    Dhadphale JM; Unni VR; Saha A; Sujith RI
    Chaos; 2022 Jan; 32(1):013131. PubMed ID: 35105133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled interaction between unsteady flame dynamics and acoustic field in a turbulent combustor.
    Godavarthi V; Pawar SA; Unni VR; Sujith RI; Marwan N; Kurths J
    Chaos; 2018 Nov; 28(11):113111. PubMed ID: 30501211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mean-field model of synchronization for open-loop, swirl controlled thermoacoustic system.
    Singh S; Kumar Dutta A; Dhadphale JM; Roy A; Sujith RI; Chaudhuri S
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigating self-excited flame pulsating and thermoacoustic oscillations using perforated liners.
    Zhao D; Gutmark E; Reinecke A
    Sci Bull (Beijing); 2019 Jul; 64(13):941-952. PubMed ID: 36659759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lagrangian coherent structures during combustion instability in a premixed-flame backward-step combustor.
    Sampath R; Mathur M; Chakravarthy SR
    Phys Rev E; 2016 Dec; 94(6-1):062209. PubMed ID: 28085437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recurrence networks to study dynamical transitions in a turbulent combustor.
    Godavarthi V; Unni VR; Gopalakrishnan EA; Sujith RI
    Chaos; 2017 Jun; 27(6):063113. PubMed ID: 28679226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronization transition from chaos to limit cycle oscillations when a locally coupled chaotic oscillator grid is coupled globally to another chaotic oscillator.
    Godavarthi V; Kasthuri P; Mondal S; Sujith RI; Marwan N; Kurths J
    Chaos; 2020 Mar; 30(3):033121. PubMed ID: 32237762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting deterministic nature of pressure measurements from a turbulent combustor.
    Tony J; Gopalakrishnan EA; Sreelekha E; Sujith RI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062902. PubMed ID: 26764769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Study on the Unsteady Spray Combustion Process of a Liquid Oxygen/Methane Swirl Coaxial Injector.
    Cao P; Bai X; Li Q; Cheng P; Li Z
    ACS Omega; 2021 Oct; 6(40):26191-26200. PubMed ID: 34660978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of degeneration process in combustion instability based on dynamical systems theory.
    Gotoda H; Okuno Y; Hayashi K; Tachibana S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052906. PubMed ID: 26651761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.