These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31154957)

  • 1. Application of central composite design to reveal resin deterioration during the removal of hexavalent chromium from wastewater.
    Xiao K; Yang H; He J; Yang B; Zhu C
    Environ Technol; 2021 Jan; 42(2):298-305. PubMed ID: 31154957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The oxidative degradation of polystyrene resins on the removal of Cr(VI) from wastewater by anion exchange.
    Xiao K; Xu F; Jiang L; Dan Z; Duan N
    Chemosphere; 2016 Aug; 156():326-333. PubMed ID: 27183334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of response surface methodology and artificial neural network: modeling and optimization of Cr(VI) adsorption process using Dowex 1X8 anion exchange resin.
    Harbi S; Guesmi F; Tabassi D; Hannachi C; Hamrouni B
    Water Sci Technol; 2016; 73(10):2402-12. PubMed ID: 27191561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Central Composite Design approach for removal of chromium (VI) from aqueous solution using weakly anionic resin: modeling, optimization, and study of interactive variables.
    Bajpai S; Gupta SK; Dey A; Jha MK; Bajpai V; Joshi S; Gupta A
    J Hazard Mater; 2012 Aug; 227-228():436-44. PubMed ID: 22698684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of Cr(VI) from aqueous solution using electrosynthesized 4-amino-3-hydroxynaphthalene-1-sulfonic acid doped polypyrrole as adsorbent.
    Sall ML; Diaw AKD; Gningue-Sall D; Chevillot-Biraud A; Oturan N; Oturan MA; Aaron JJ
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21111-21127. PubMed ID: 28730362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins.
    Gode F; Pehlivan E
    J Hazard Mater; 2005 Mar; 119(1-3):175-82. PubMed ID: 15752863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fruit waste-derived cellulose-polyaniline composite for adsorption-coupled reduction of chromium oxyanions.
    Joshi P; Mehta S; Goswami RN; Srivastava M; Ray A; Khatri OP
    Environ Sci Pollut Res Int; 2024 Feb; 31(6):8719-8735. PubMed ID: 38182948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption mechanisms of hexavalent chromium from aqueous solutions on modified activated carbons.
    Valentín-Reyes J; García-Reyes RB; García-González A; Soto-Regalado E; Cerino-Córdova F
    J Environ Manage; 2019 Apr; 236():815-822. PubMed ID: 30776554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of anaerobic granular sludge for chromium (VI) removal from wastewater: optimization by response surface methodology.
    Hu Y; Yang C; Dan J; Pu W; Yang J
    Water Sci Technol; 2017 Sep; 76(5-6):1112-1123. PubMed ID: 28876252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan-iron oxide hybrid composite: mechanism of hexavalent chromium removal by central composite design and theoretical calculations.
    Chagas PMB; Caetano AA; Rossi MA; Gonçalves MA; de Castro Ramalho T; Corrêa AD; do Rosário Guimarães I
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):15973-15988. PubMed ID: 30963426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modacrylic anion-exchange fibers for Cr(VI) removal from chromium-plating rinse water in batch and flow-through column experiments.
    Lee SC; Kang JK; Sim EH; Choi NC; Kim SB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Nov; 52(13):1195-1203. PubMed ID: 28920769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into the synergistic adsorption-reduction character of chromium(VI) onto poly(pyrogallol-tetraethylene pentamine) microsphere in synthetic wastewater.
    Zhang Y; Liu Q; Ma W; Liu H; Zhu J; Wang L; Pei H; Liu Q; Yao J
    J Colloid Interface Sci; 2022 Mar; 609():825-837. PubMed ID: 34839912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of Cr(VI) onto functionalized pyridine copolymer with amide groups.
    Neagu V
    J Hazard Mater; 2009 Nov; 171(1-3):410-6. PubMed ID: 19647364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorptive performance of activated carbon reused from household drinking water filter for hexavalent chromium-contaminated water.
    Sangkarak S; Phetrak A; Kittipongvises S; Kitkaew D; Phihusut D; Lohwacharin J
    J Environ Manage; 2020 Oct; 272():111085. PubMed ID: 32854889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and Cr(VI) removal performance of corncob activated carbon.
    Li H; Gao P; Cui J; Zhang F; Wang F; Cheng J
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20743-20755. PubMed ID: 29754303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromium removal using resin supported nanoscale zero-valent iron.
    Fu F; Ma J; Xie L; Tang B; Han W; Lin S
    J Environ Manage; 2013 Oct; 128():822-7. PubMed ID: 23867839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on adsorption of Cr(Ⅵ) by Poly-epichlorohydrin-dimethylamine (EPIDMA) modified weakly basic anion exchange resin D301.
    Zang Y; Yue Q; Kan Y; Zhang L; Gao B
    Ecotoxicol Environ Saf; 2018 Oct; 161():467-473. PubMed ID: 29909316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics and kinetics of hexavalent chromium reduction by gallic acid in aqueous solutions.
    Chen Z; Zhao Y; Li Q
    Water Sci Technol; 2015; 71(11):1694-700. PubMed ID: 26038935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amberlite IRC-718 ion chelating resin extraction of hazardous metal Cr (VI) from aqueous solutions: equilibrium and theoretical modeling.
    Addala A; Boudiaf M; Elektorowicz M; Bentouhami E; Bengeurba Y
    Water Sci Technol; 2021 Sep; 84(5):1206-1216. PubMed ID: 34534117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of chromium(III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperature.
    Gode F; Pehlivan E
    J Hazard Mater; 2006 Aug; 136(2):330-7. PubMed ID: 16439060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.