These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 31155058)
1. Identifying potentially O-GlcNAcylated proteins using metabolic labeling, bioorthogonal enrichment, and Western blotting. Darabedian N; Pratt MR Methods Enzymol; 2019; 622():293-307. PubMed ID: 31155058 [TBL] [Abstract][Full Text] [Related]
2. Chemical Reporters and Their Bioorthogonal Reactions for Labeling Protein Kim EJ Molecules; 2018 Sep; 23(10):. PubMed ID: 30241321 [TBL] [Abstract][Full Text] [Related]
3. Metabolic Labeling for the Visualization and Identification of Potentially O-GlcNAc-Modified Proteins. Pedowitz NJ; Zaro BW; Pratt MR Curr Protoc Chem Biol; 2020 Jun; 12(2):e81. PubMed ID: 32289208 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics. Li S; Zhu H; Wang J; Wang X; Li X; Ma C; Wen L; Yu B; Wang Y; Li J; Wang PG Electrophoresis; 2016 Jun; 37(11):1431-6. PubMed ID: 26853435 [TBL] [Abstract][Full Text] [Related]
5. O-GlcNAcylation site mapping by (azide-alkyne) click chemistry and mass spectrometry following intensive fractionation of skeletal muscle cells proteins. Deracinois B; Camoin L; Lambert M; Boyer JB; Dupont E; Bastide B; Cieniewski-Bernard C J Proteomics; 2018 Aug; 186():83-97. PubMed ID: 30016717 [TBL] [Abstract][Full Text] [Related]
6. Optimization of Chemoenzymatic Mass Tagging by Strain-Promoted Cycloaddition (SPAAC) for the Determination of O-GlcNAc Stoichiometry by Western Blotting. Darabedian N; Thompson JW; Chuh KN; Hsieh-Wilson LC; Pratt MR Biochemistry; 2018 Oct; 57(40):5769-5774. PubMed ID: 30169966 [TBL] [Abstract][Full Text] [Related]
7. WGA-based lectin affinity gel electrophoresis: A novel method for the detection of O-GlcNAc-modified proteins. Kubota Y; Fujioka K; Takekawa M PLoS One; 2017; 12(7):e0180714. PubMed ID: 28686627 [TBL] [Abstract][Full Text] [Related]
8. Identification of O-GlcNAcylated proteins in Plasmodium falciparum. Kupferschmid M; Aquino-Gil MO; Shams-Eldin H; Schmidt J; Yamakawa N; Krzewinski F; Schwarz RT; Lefebvre T Malar J; 2017 Nov; 16(1):485. PubMed ID: 29187233 [TBL] [Abstract][Full Text] [Related]
9. Ac Wang J; Cao W; Zhang W; Dou B; Zeng X; Su S; Cao H; Ding X; Ma J; Li X Bioorg Chem; 2023 Feb; 131():106139. PubMed ID: 36610251 [TBL] [Abstract][Full Text] [Related]
10. Native detection of protein Fu C; van Aalten DMF Analyst; 2020 Oct; 145(21):6826-6830. PubMed ID: 33103664 [TBL] [Abstract][Full Text] [Related]
11. Multiple reaction monitoring mass spectrometry for the discovery and quantification of O-GlcNAc-modified proteins. Maury JJ; Ng D; Bi X; Bardor M; Choo AB Anal Chem; 2014 Jan; 86(1):395-402. PubMed ID: 24144119 [TBL] [Abstract][Full Text] [Related]
12. Deciphering the Functions of O-GlcNAc Glycosylation in the Brain: The Role of Site-Specific Quantitative O-GlcNAcomics. Thompson JW; Sorum AW; Hsieh-Wilson LC Biochemistry; 2018 Jul; 57(27):4010-4018. PubMed ID: 29936833 [TBL] [Abstract][Full Text] [Related]
13. Chemoproteomic profiling of O-GlcNAcylated proteins and identification of O-GlcNAc transferases in rice. Li X; Lei C; Song Q; Bai L; Cheng B; Qin K; Li X; Ma B; Wang B; Zhou W; Chen X; Li J Plant Biotechnol J; 2023 Apr; 21(4):742-753. PubMed ID: 36577688 [TBL] [Abstract][Full Text] [Related]
14. Changes in metabolic chemical reporter structure yield a selective probe of O-GlcNAc modification. Chuh KN; Zaro BW; Piller F; Piller V; Pratt MR J Am Chem Soc; 2014 Sep; 136(35):12283-95. PubMed ID: 25153642 [TBL] [Abstract][Full Text] [Related]
15. Identification of new O-GlcNAc modified proteins using a click-chemistry-based tagging. Gurcel C; Vercoutter-Edouart AS; Fonbonne C; Mortuaire M; Salvador A; Michalski JC; Lemoine J Anal Bioanal Chem; 2008 Apr; 390(8):2089-97. PubMed ID: 18369606 [TBL] [Abstract][Full Text] [Related]
16. Detection of O-GlcNAc modifications on cardiac myofilament proteins. Ramirez-Correa GA; Ferrando IM; Hart G; Murphy A Methods Mol Biol; 2013; 1005():157-68. PubMed ID: 23606256 [TBL] [Abstract][Full Text] [Related]
17. Incorporation of unnatural sugars for the identification of glycoproteins. Zaro BW; Hang HC; Pratt MR Methods Mol Biol; 2013; 951():57-67. PubMed ID: 23296524 [TBL] [Abstract][Full Text] [Related]
18. Metabolic cross-talk allows labeling of O-linked beta-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway. Boyce M; Carrico IS; Ganguli AS; Yu SH; Hangauer MJ; Hubbard SC; Kohler JJ; Bertozzi CR Proc Natl Acad Sci U S A; 2011 Feb; 108(8):3141-6. PubMed ID: 21300897 [TBL] [Abstract][Full Text] [Related]
19. A novel strategy for global mapping of O-GlcNAc proteins and peptides using selective enzymatic deglycosylation, HILIC enrichment and mass spectrometry identification. Shen B; Zhang W; Shi Z; Tian F; Deng Y; Sun C; Wang G; Qin W; Qian X Talanta; 2017 Jul; 169():195-202. PubMed ID: 28411811 [TBL] [Abstract][Full Text] [Related]
20. Characterization of O-GlcNAc cycling and proteomic identification of differentially O-GlcNAcylated proteins during G1/S transition. Drougat L; Olivier-Van Stichelen S; Mortuaire M; Foulquier F; Lacoste AS; Michalski JC; Lefebvre T; Vercoutter-Edouart AS Biochim Biophys Acta; 2012 Dec; 1820(12):1839-48. PubMed ID: 22967762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]