These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 31155211)

  • 1. A framework for biomechanics simulations using four-chamber cardiac models.
    Jafari A; Pszczolkowski E; Krishnamurthy A
    J Biomech; 2019 Jun; 91():92-101. PubMed ID: 31155211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanics Simulations Using Cubic Hermite Meshes with Extraordinary Nodes for Isogeometric Cardiac Modeling.
    Krishnamurthy A; Gonzales MJ; Sturgeon G; Segars WP; McCulloch AD
    Comput Aided Geom Des; 2016 Mar; 43():27-38. PubMed ID: 27182096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional finite element model of human atrial anatomy: new methods for cubic Hermite meshes with extraordinary vertices.
    Gonzales MJ; Sturgeon G; Krishnamurthy A; Hake J; Jonas R; Stark P; Rappel WJ; Narayan SM; Zhang Y; Segars WP; McCulloch AD
    Med Image Anal; 2013 Jul; 17(5):525-37. PubMed ID: 23602918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of electrical conductivity of myocardium on cardiac pumping efficacy: a computational study.
    Yuniarti AR; Lim KM
    Biomed Eng Online; 2017 Jan; 16(1):11. PubMed ID: 28086779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
    Masithulela F
    Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An accurate, fast and robust method to generate patient-specific cubic Hermite meshes.
    Lamata P; Niederer S; Nordsletten D; Barber DC; Roy I; Hose DR; Smith N
    Med Image Anal; 2011 Dec; 15(6):801-13. PubMed ID: 21788150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A collocation--Galerkin finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):743-57. PubMed ID: 7927397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laminar structure of the heart: a mathematical model.
    Legrice IJ; Hunter PJ; Smaill BH
    Am J Physiol; 1997 May; 272(5 Pt 2):H2466-76. PubMed ID: 9176318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of the pericardium for cardiac biomechanics: from physiology to computational modeling.
    Pfaller MR; Hörmann JM; Weigl M; Nagler A; Chabiniok R; Bertoglio C; Wall WA
    Biomech Model Mechanobiol; 2019 Apr; 18(2):503-529. PubMed ID: 30535650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the reference domain influence in personalised models of cardiac mechanics : Effect of unloaded geometry on cardiac biomechanics.
    Hadjicharalambous M; Stoeck CT; Weisskopf M; Cesarovic N; Ioannou E; Vavourakis V; Nordsletten DA
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1579-1597. PubMed ID: 34047891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Personalization of cubic Hermite meshes for efficient biomechanical simulations.
    Lamata P; Niederer S; Barber D; Norsletten D; Lee J; Hose R; Smith N
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):380-7. PubMed ID: 20879338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal and pathological NCAT image and phantom data based on physiologically realistic left ventricle finite-element models.
    Veress AI; Segars WP; Weiss JA; Tsui BM; Gullberg GT
    IEEE Trans Med Imaging; 2006 Dec; 25(12):1604-16. PubMed ID: 17167995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element modeling of the left atrium to facilitate the design of an endoscopic atrial retractor.
    Jernigan SR; Buckner GD; Eischen JW; Cormier DR
    J Biomech Eng; 2007 Dec; 129(6):825-37. PubMed ID: 18067386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.
    Maas SA; Ellis BJ; Rawlins DS; Weiss JA
    J Biomech; 2016 Mar; 49(5):659-667. PubMed ID: 26900037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur.
    Ramos A; Simões JA
    Med Eng Phys; 2006 Nov; 28(9):916-24. PubMed ID: 16464628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of myocardial action potential duration on cardiac pumping efficacy: a computational study.
    Jeong DU; Lim KM
    Biomed Eng Online; 2018 Jun; 17(1):79. PubMed ID: 29907152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite state machine implementation for left ventricle modeling and control.
    King JM; Bergeron CA; Taylor CE
    Biomed Eng Online; 2019 Jan; 18(1):10. PubMed ID: 30700298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes.
    Trew ML; Smaill BH; Bullivant DP; Hunter PJ; Pullan AJ
    Math Biosci; 2005 Dec; 198(2):169-89. PubMed ID: 16140344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three dimensional electromechanical model of porcine heart with penetrating wound injury.
    Usyk T; Kerckhoffs R
    Stud Health Technol Inform; 2005; 111():568-73. PubMed ID: 15718799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.