BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 31155234)

  • 1. The Translational Landscape of the Human Heart.
    van Heesch S; Witte F; Schneider-Lunitz V; Schulz JF; Adami E; Faber AB; Kirchner M; Maatz H; Blachut S; Sandmann CL; Kanda M; Worth CL; Schafer S; Calviello L; Merriott R; Patone G; Hummel O; Wyler E; Obermayer B; Mücke MB; Lindberg EL; Trnka F; Memczak S; Schilling M; Felkin LE; Barton PJR; Quaife NM; Vanezis K; Diecke S; Mukai M; Mah N; Oh SJ; Kurtz A; Schramm C; Schwinge D; Sebode M; Harakalova M; Asselbergs FW; Vink A; de Weger RA; Viswanathan S; Widjaja AA; Gärtner-Rommel A; Milting H; Dos Remedios C; Knosalla C; Mertins P; Landthaler M; Vingron M; Linke WA; Seidman JG; Seidman CE; Rajewsky N; Ohler U; Cook SA; Hubner N
    Cell; 2019 Jun; 178(1):242-260.e29. PubMed ID: 31155234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translatable circRNAs and lncRNAs: Driving mechanisms and functions of their translation products.
    Kong S; Tao M; Shen X; Ju S
    Cancer Lett; 2020 Jul; 483():59-65. PubMed ID: 32360179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation.
    Bazin J; Baerenfaller K; Gosai SJ; Gregory BD; Crespi M; Bailey-Serres J
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E10018-E10027. PubMed ID: 29087317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long Non-Coding RNAs Associated with Ribosomes in Human Adipose-Derived Stem Cells: From RNAs to Microproteins.
    Bonilauri B; Holetz FB; Dallagiovanna B
    Biomolecules; 2021 Nov; 11(11):. PubMed ID: 34827671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pateamine A-sensitive ribosome profiling reveals the scope of translation in mouse embryonic stem cells.
    Popa A; Lebrigand K; Barbry P; Waldmann R
    BMC Genomics; 2016 Jan; 17():52. PubMed ID: 26764022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cardiac translational landscape reveals that micropeptides are new players involved in cardiomyocyte hypertrophy.
    Yan Y; Tang R; Li B; Cheng L; Ye S; Yang T; Han YC; Liu C; Dong Y; Qu LH; Lui KO; Yang JH; Huang ZP
    Mol Ther; 2021 Jul; 29(7):2253-2267. PubMed ID: 33677093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue- and stage-specific landscape of the mouse translatome.
    Wang H; Wang Y; Yang J; Zhao Q; Tang N; Chen C; Li H; Cheng C; Xie M; Yang Y; Xie Z
    Nucleic Acids Res; 2021 Jun; 49(11):6165-6180. PubMed ID: 34107020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of Long Noncoding RNAs and Circular RNAs in Translation.
    Chekulaeva M; Rajewsky N
    Cold Spring Harb Perspect Biol; 2019 Jun; 11(6):. PubMed ID: 30082465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in ribosome profiling for deciphering translational regulation.
    Wang Y; Zhang H; Lu J
    Methods; 2020 Apr; 176():46-54. PubMed ID: 31103613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of new proteins from translated sORFs in long non-coding RNAs.
    Ruiz-Orera J; Villanueva-Cañas JL; Albà MM
    Exp Cell Res; 2020 Jun; 391(1):111940. PubMed ID: 32156600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pervasive functional translation of noncanonical human open reading frames.
    Chen J; Brunner AD; Cogan JZ; Nuñez JK; Fields AP; Adamson B; Itzhak DN; Li JY; Mann M; Leonetti MD; Weissman JS
    Science; 2020 Mar; 367(6482):1140-1146. PubMed ID: 32139545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long non-coding RNAs as a source of new peptides.
    Ruiz-Orera J; Messeguer X; Subirana JA; Alba MM
    Elife; 2014 Sep; 3():e03523. PubMed ID: 25233276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Not lost in host translation: The new roles of long noncoding RNAs in infectious diseases.
    Reisacher C; Arbibe L
    Cell Microbiol; 2019 Nov; 21(11):e13119. PubMed ID: 31634981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-resolution map of human RNA translation.
    Chothani SP; Adami E; Widjaja AA; Langley SR; Viswanathan S; Pua CJ; Zhihao NT; Harmston N; D'Agostino G; Whiffin N; Mao W; Ouyang JF; Lim WW; Lim S; Lee CQE; Grubman A; Chen J; Kovalik JP; Tryggvason K; Polo JM; Ho L; Cook SA; Rackham OJL; Schafer S
    Mol Cell; 2022 Aug; 82(15):2885-2899.e8. PubMed ID: 35841888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting actively translated open reading frames in ribosome profiling data.
    Calviello L; Mukherjee N; Wyler E; Zauber H; Hirsekorn A; Selbach M; Landthaler M; Obermayer B; Ohler U
    Nat Methods; 2016 Feb; 13(2):165-70. PubMed ID: 26657557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RibORF: Identifying Genome-Wide Translated Open Reading Frames Using Ribosome Profiling.
    Ji Z
    Curr Protoc Mol Biol; 2018 Oct; 124(1):e67. PubMed ID: 30178897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translation of Small Open Reading Frames: Roles in Regulation and Evolutionary Innovation.
    Ruiz-Orera J; Albà MM
    Trends Genet; 2019 Mar; 35(3):186-198. PubMed ID: 30606460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames.
    Janich P; Arpat AB; Castelo-Szekely V; Lopes M; Gatfield D
    Genome Res; 2015 Dec; 25(12):1848-59. PubMed ID: 26486724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo annotation and characterization of the translatome with ribosome profiling data.
    Xiao Z; Huang R; Xing X; Chen Y; Deng H; Yang X
    Nucleic Acids Res; 2018 Jun; 46(10):e61. PubMed ID: 29538776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the mechanisms of eukaryotic translation gained with ribosome profiling.
    Andreev DE; O'Connor PB; Loughran G; Dmitriev SE; Baranov PV; Shatsky IN
    Nucleic Acids Res; 2017 Jan; 45(2):513-526. PubMed ID: 27923997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.