These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1056 related articles for article (PubMed ID: 31155255)
1. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population. Ma P; Lund MS; Aamand GP; Su G J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255 [TBL] [Abstract][Full Text] [Related]
2. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances. Su G; Christensen OF; Janss L; Lund MS J Dairy Sci; 2014 Oct; 97(10):6547-59. PubMed ID: 25129495 [TBL] [Abstract][Full Text] [Related]
3. Model comparison on genomic predictions using high-density markers for different groups of bulls in the Nordic Holstein population. Gao H; Su G; Janss L; Zhang Y; Lund MS J Dairy Sci; 2013 Jul; 96(7):4678-87. PubMed ID: 23660137 [TBL] [Abstract][Full Text] [Related]
4. Single-step genomic model improved reliability and reduced the bias of genomic predictions in Danish Jersey. Ma P; Lund MS; Nielsen US; Aamand GP; Su G J Dairy Sci; 2015 Dec; 98(12):9026-34. PubMed ID: 26433415 [TBL] [Abstract][Full Text] [Related]
5. Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction. Brøndum RF; Su G; Janss L; Sahana G; Guldbrandtsen B; Boichard D; Lund MS J Dairy Sci; 2015 Jun; 98(6):4107-16. PubMed ID: 25892697 [TBL] [Abstract][Full Text] [Related]
6. Genomic predictions based on a joint reference population for the Nordic Red cattle breeds. Zhou L; Heringstad B; Su G; Guldbrandtsen B; Meuwissen TH; Svendsen M; Grove H; Nielsen US; Lund MS J Dairy Sci; 2014 Jul; 97(7):4485-96. PubMed ID: 24792791 [TBL] [Abstract][Full Text] [Related]
7. Optimizing genomic prediction for Australian Red dairy cattle. van den Berg I; MacLeod IM; Reich CM; Breen EJ; Pryce JE J Dairy Sci; 2020 Jul; 103(7):6276-6298. PubMed ID: 32331891 [TBL] [Abstract][Full Text] [Related]
8. Value of sharing cow reference population between countries on reliability of genomic prediction for milk yield traits. Haile-Mariam M; MacLeod IM; Bolormaa S; Schrooten C; O'Connor E; de Jong G; Daetwyler HD; Pryce JE J Dairy Sci; 2020 Feb; 103(2):1711-1728. PubMed ID: 31864746 [TBL] [Abstract][Full Text] [Related]
9. Comparison of genomic predictions using medium-density (∼54,000) and high-density (∼777,000) single nucleotide polymorphism marker panels in Nordic Holstein and Red Dairy Cattle populations. Su G; Brøndum RF; Ma P; Guldbrandtsen B; Aamand GP; Lund MS J Dairy Sci; 2012 Aug; 95(8):4657-65. PubMed ID: 22818480 [TBL] [Abstract][Full Text] [Related]
10. Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle. van Binsbergen R; Calus MP; Bink MC; van Eeuwijk FA; Schrooten C; Veerkamp RF Genet Sel Evol; 2015 Sep; 47(1):71. PubMed ID: 26381777 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide association study and prediction of genomic breeding values for fatty-acid composition in Korean Hanwoo cattle using a high-density single-nucleotide polymorphism array. Bhuiyan MSA; Kim YK; Kim HJ; Lee DH; Lee SH; Yoon HB; Lee SH J Anim Sci; 2018 Sep; 96(10):4063-4075. PubMed ID: 30265318 [TBL] [Abstract][Full Text] [Related]
12. Improvement of genomic prediction by integrating additional single nucleotide polymorphisms selected from imputed whole genome sequencing data. Liu A; Lund MS; Boichard D; Karaman E; Fritz S; Aamand GP; Nielsen US; Wang Y; Su G Heredity (Edinb); 2020 Jan; 124(1):37-49. PubMed ID: 31278370 [TBL] [Abstract][Full Text] [Related]
13. Effect of imputing markers from a low-density chip on the reliability of genomic breeding values in Holstein populations. Dassonneville R; Brøndum RF; Druet T; Fritz S; Guillaume F; Guldbrandtsen B; Lund MS; Ducrocq V; Su G J Dairy Sci; 2011 Jul; 94(7):3679-86. PubMed ID: 21700057 [TBL] [Abstract][Full Text] [Related]
14. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle. Hassani S; Saatchi M; Fernando RL; Garrick DJ Genet Sel Evol; 2015 Dec; 47():99. PubMed ID: 26698091 [TBL] [Abstract][Full Text] [Related]
15. Reliability of genomic prediction for milk fatty acid composition by using a multi-population reference and incorporating GWAS results. Gebreyesus G; Bovenhuis H; Lund MS; Poulsen NA; Sun D; Buitenhuis B Genet Sel Evol; 2019 Apr; 51(1):16. PubMed ID: 31029078 [TBL] [Abstract][Full Text] [Related]
17. Application of a Bayesian non-linear model hybrid scheme to sequence data for genomic prediction and QTL mapping. Wang T; Chen YP; MacLeod IM; Pryce JE; Goddard ME; Hayes BJ BMC Genomics; 2017 Aug; 18(1):618. PubMed ID: 28810831 [TBL] [Abstract][Full Text] [Related]
18. Multibreed genomic prediction using multitrait genomic residual maximum likelihood and multitask Bayesian variable selection. Calus MPL; Goddard ME; Wientjes YCJ; Bowman PJ; Hayes BJ J Dairy Sci; 2018 May; 101(5):4279-4294. PubMed ID: 29550121 [TBL] [Abstract][Full Text] [Related]
19. Weighted single-step genomic best linear unbiased prediction integrating variants selected from sequencing data by association and bioinformatics analyses. Liu A; Lund MS; Boichard D; Karaman E; Guldbrandtsen B; Fritz S; Aamand GP; Nielsen US; Sahana G; Wang Y; Su G Genet Sel Evol; 2020 Aug; 52(1):48. PubMed ID: 32799816 [TBL] [Abstract][Full Text] [Related]
20. Including different groups of genotyped females for genomic prediction in a Nordic Jersey population. Gao H; Madsen P; Nielsen US; Aamand GP; Su G; Byskov K; Jensen J J Dairy Sci; 2015 Dec; 98(12):9051-9. PubMed ID: 26433419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]