BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 31155310)

  • 1. Structure and Mechanism of Acetylation by the N-Terminal Dual Enzyme NatA/Naa50 Complex.
    Deng S; Magin RS; Wei X; Pan B; Petersson EJ; Marmorstein R
    Structure; 2019 Jul; 27(7):1057-1070.e4. PubMed ID: 31155310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases.
    Van Damme P; Hole K; Gevaert K; Arnesen T
    Proteomics; 2015 Jul; 15(14):2436-46. PubMed ID: 25886145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional characterization of the N-terminal acetyltransferase Naa50.
    Weidenhausen J; Kopp J; Armbruster L; Wirtz M; Lapouge K; Sinning I
    Structure; 2021 May; 29(5):413-425.e5. PubMed ID: 33400917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NAA50 Is an Enzymatically Active
    Armbruster L; Linster E; Boyer JB; Brünje A; Eirich J; Stephan I; Bienvenut WV; Weidenhausen J; Meinnel T; Hell R; Sinning I; Finkemeier I; Giglione C; Wirtz M
    Plant Physiol; 2020 Aug; 183(4):1502-1516. PubMed ID: 32461302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant.
    Van Damme P; Støve SI; Glomnes N; Gevaert K; Arnesen T
    Mol Cell Proteomics; 2014 Aug; 13(8):2031-41. PubMed ID: 24408909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis for N-terminal acetylation by human NatE and its modulation by HYPK.
    Deng S; McTiernan N; Wei X; Arnesen T; Marmorstein R
    Nat Commun; 2020 Feb; 11(1):818. PubMed ID: 32042062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Naa50 Protein Displays Broad Substrate Specificity for Amino-terminal Acetylation: DETAILED STRUCTURAL AND BIOCHEMICAL ANALYSIS USING TETRAPEPTIDE LIBRARY.
    Reddi R; Saddanapu V; Chinthapalli DK; Sankoju P; Sripadi P; Addlagatta A
    J Biol Chem; 2016 Sep; 291(39):20530-8. PubMed ID: 27484799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of Human NatA and Its Regulation by the Huntingtin Interacting Protein HYPK.
    Gottlieb L; Marmorstein R
    Structure; 2018 Jul; 26(7):925-935.e8. PubMed ID: 29754825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog.
    Liszczak G; Marmorstein R
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14652-7. PubMed ID: 23959863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the functionality of a ribosome-binding mutant of NAA15 using Saccharomyces cerevisiae.
    Varland S; Arnesen T
    BMC Res Notes; 2018 Jun; 11(1):404. PubMed ID: 29929531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charting the N-Terminal Acetylome: A Comprehensive Map of Human NatA Substrates.
    Van Damme P
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the interaction between NatA and the ribosome for co-translational protein acetylation.
    Magin RS; Deng S; Zhang H; Cooperman B; Marmorstein R
    PLoS One; 2017; 12(10):e0186278. PubMed ID: 29016658
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    McTiernan N; Darbakk C; Ree R; Arnesen T
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opposing Functions of the N-terminal Acetyltransferases Naa50 and NatA in Sister-chromatid Cohesion.
    Rong Z; Ouyang Z; Magin RS; Marmorstein R; Yu H
    J Biol Chem; 2016 Sep; 291(36):19079-91. PubMed ID: 27422821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel NAA10 p.(R83H) variant with impaired acetyltransferase activity identified in two boys with ID and microcephaly.
    Ree R; Geithus AS; Tørring PM; Sørensen KP; Damkjær M; ; Lynch SA; Arnesen T
    BMC Med Genet; 2019 Jun; 20(1):101. PubMed ID: 31174490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended N-Terminal Acetyltransferase Naa50 in Filamentous Fungi Adds to Naa50 Diversity.
    Weidenhausen J; Kopp J; Ruger-Herreros C; Stein F; Haberkant P; Lapouge K; Sinning I
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis for N-terminal acetylation by the heterodimeric NatA complex.
    Liszczak G; Goldberg JM; Foyn H; Petersson EJ; Arnesen T; Marmorstein R
    Nat Struct Mol Biol; 2013 Sep; 20(9):1098-105. PubMed ID: 23912279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of HypK regulating N-terminal acetylation by the NatA complex.
    Weyer FA; Gumiero A; Lapouge K; Bange G; Kopp J; Sinning I
    Nat Commun; 2017 Jun; 8():15726. PubMed ID: 28585574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosome-NatA architecture reveals that rRNA expansion segments coordinate N-terminal acetylation.
    Knorr AG; Schmidt C; Tesina P; Berninghausen O; Becker T; Beatrix B; Beckmann R
    Nat Struct Mol Biol; 2019 Jan; 26(1):35-39. PubMed ID: 30559462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase.
    Van Damme P; Evjenth R; Foyn H; Demeyer K; De Bock PJ; Lillehaug JR; Vandekerckhove J; Arnesen T; Gevaert K
    Mol Cell Proteomics; 2011 May; 10(5):M110.004580. PubMed ID: 21383206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.