These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 31155657)
1. Characterization and identification of antimicrobial peptides with different functional activities. Chung CR; Kuo TR; Wu LC; Lee TY; Horng JT Brief Bioinform; 2019 Jun; ():. PubMed ID: 31155657 [TBL] [Abstract][Full Text] [Related]
2. Characterization and Identification of Natural Antimicrobial Peptides on Different Organisms. Chung CR; Jhong JH; Wang Z; Chen S; Wan Y; Horng JT; Lee TY Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32024233 [TBL] [Abstract][Full Text] [Related]
3. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities. Xu J; Li F; Li C; Guo X; Landersdorfer C; Shen HH; Peleg AY; Li J; Imoto S; Yao J; Akutsu T; Song J Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37369638 [TBL] [Abstract][Full Text] [Related]
4. CalcAMP: A New Machine Learning Model for the Accurate Prediction of Antimicrobial Activity of Peptides. Bournez C; Riool M; de Boer L; Cordfunke RA; de Best L; van Leeuwen R; Drijfhout JW; Zaat SAJ; van Westen GJP Antibiotics (Basel); 2023 Apr; 12(4):. PubMed ID: 37107088 [TBL] [Abstract][Full Text] [Related]
5. PTPAMP: prediction tool for plant-derived antimicrobial peptides. Jaiswal M; Singh A; Kumar S Amino Acids; 2023 Jan; 55(1):1-17. PubMed ID: 35864258 [TBL] [Abstract][Full Text] [Related]
6. Bobde SS; Alsaab FM; Wang G; Van Hoek ML Front Microbiol; 2021; 12():715246. PubMed ID: 34867843 [TBL] [Abstract][Full Text] [Related]
7. dbAMP: an integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data. Jhong JH; Chi YH; Li WC; Lin TH; Huang KY; Lee TY Nucleic Acids Res; 2019 Jan; 47(D1):D285-D297. PubMed ID: 30380085 [TBL] [Abstract][Full Text] [Related]
8. Exploring the arsenal of antimicrobial peptides: Mechanisms, diversity, and applications. Savitskaya A; Masso-Silva J; Haddaoui I; Enany S Biochimie; 2023 Nov; 214(Pt B):216-227. PubMed ID: 37499896 [TBL] [Abstract][Full Text] [Related]
9. AGRAMP: machine learning models for predicting antimicrobial peptides against phytopathogenic bacteria. Shao J; Zhao Y; Wei W; Vaisman II Front Microbiol; 2024; 15():1304044. PubMed ID: 38516021 [TBL] [Abstract][Full Text] [Related]
10. Amino Acid Reduction Can Help to Improve the Identification of Antimicrobial Peptides and Their Functional Activities. Dong GF; Zheng L; Huang SH; Gao J; Zuo YC Front Genet; 2021; 12():669328. PubMed ID: 33959153 [TBL] [Abstract][Full Text] [Related]
11. Resistance to antimicrobial peptides in Gram-negative bacteria. Gruenheid S; Le Moual H FEMS Microbiol Lett; 2012 May; 330(2):81-9. PubMed ID: 22339775 [TBL] [Abstract][Full Text] [Related]
12. Target-AMP: Computational prediction of antimicrobial peptides by coupling sequential information with evolutionary profile. Jan A; Hayat M; Wedyan M; Alturki R; Gazzawe F; Ali H; Alarfaj FK Comput Biol Med; 2022 Dec; 151(Pt A):106311. PubMed ID: 36410097 [TBL] [Abstract][Full Text] [Related]
13. AMP-RNNpro: a two-stage approach for identification of antimicrobials using probabilistic features. Shaon MSH; Karim T; Sultan MF; Ali MM; Ahmed K; Hasan MZ; Moustafa A; Bui FM; Al-Zahrani FA Sci Rep; 2024 Jun; 14(1):12892. PubMed ID: 38839785 [TBL] [Abstract][Full Text] [Related]
14. Large-Scale Analysis of Antimicrobial Activities in Relation to Amphipathicity and Charge Reveals Novel Characterization of Antimicrobial Peptides. Wang CK; Shih LY; Chang KY Molecules; 2017 Nov; 22(11):. PubMed ID: 29165350 [TBL] [Abstract][Full Text] [Related]
15. Role of Antimicrobial Peptides in Immunity of Parasitic Leeches. Kaygorodova IA Dokl Biol Sci; 2023 Aug; 511(1):183-195. PubMed ID: 37833572 [TBL] [Abstract][Full Text] [Related]
16. In vitro and in vivo activities of antimicrobial peptides developed using an amino acid-based activity prediction method. Wu X; Wang Z; Li X; Fan Y; He G; Wan Y; Yu C; Tang J; Li M; Zhang X; Zhang H; Xiang R; Pan Y; Liu Y; Lu L; Yang L Antimicrob Agents Chemother; 2014 Sep; 58(9):5342-9. PubMed ID: 24982064 [TBL] [Abstract][Full Text] [Related]
17. Imbalanced multi-label learning for identifying antimicrobial peptides and their functional types. Lin W; Xu D Bioinformatics; 2016 Dec; 32(24):3745-3752. PubMed ID: 27565585 [TBL] [Abstract][Full Text] [Related]
18. Systematical Screening of Intracellular Protein Targets of Polyphemusin-I Using Shah P; Chen CS Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502067 [TBL] [Abstract][Full Text] [Related]
19. Designing antimicrobial peptides using deep learning and molecular dynamic simulations. Cao Q; Ge C; Wang X; Harvey PJ; Zhang Z; Ma Y; Wang X; Jia X; Mobli M; Craik DJ; Jiang T; Yang J; Wei Z; Wang Y; Chang S; Yu R Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36857616 [TBL] [Abstract][Full Text] [Related]
20. Integrating transformer and imbalanced multi-label learning to identify antimicrobial peptides and their functional activities. Pang Y; Yao L; Xu J; Wang Z; Lee TY Bioinformatics; 2022 Dec; 38(24):5368-5374. PubMed ID: 36326438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]