These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 31155657)
21. Recent trends in antimicrobial peptide prediction using machine learning techniques. Shah Y; Sehgal D; Valadi JK Bioinformation; 2017; 13(12):415-416. PubMed ID: 29379261 [TBL] [Abstract][Full Text] [Related]
22. CancerGram: An Effective Classifier for Differentiating Anticancer from Antimicrobial Peptides. Burdukiewicz M; Sidorczuk K; Rafacz D; Pietluch F; Bąkała M; Słowik J; Gagat P Pharmaceutics; 2020 Oct; 12(11):. PubMed ID: 33142753 [TBL] [Abstract][Full Text] [Related]
23. Diversity and Mechanisms of Action of Plant, Animal, and Human Antimicrobial Peptides. Satchanska G; Davidova S; Gergova A Antibiotics (Basel); 2024 Feb; 13(3):. PubMed ID: 38534637 [TBL] [Abstract][Full Text] [Related]
24. Progress in the development of antimicrobial peptide prediction tools. Ao C; Zhang Y; Li D; Zhao Y; Zou Q Curr Protein Pept Sci; 2020 Jan; ():. PubMed ID: 31957609 [TBL] [Abstract][Full Text] [Related]
25. 'Targeting' the search: An upgraded structural and functional repository of antimicrobial peptides for biofilm studies (B-AMP v2.0) with a focus on biofilm protein targets. Ravichandran S; Avatapalli S; Narasimhan Y; Kaushik KS; Yennamalli RM Front Cell Infect Microbiol; 2022; 12():1020391. PubMed ID: 36329825 [TBL] [Abstract][Full Text] [Related]
26. Machine learning-enabled predictive modeling to precisely identify the antimicrobial peptides. Wani MA; Garg P; Roy KK Med Biol Eng Comput; 2021 Nov; 59(11-12):2397-2408. PubMed ID: 34632545 [TBL] [Abstract][Full Text] [Related]
27. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. Schmitt P; Rosa RD; Destoumieux-Garzón D Biochim Biophys Acta; 2016 May; 1858(5):958-70. PubMed ID: 26498397 [TBL] [Abstract][Full Text] [Related]
28. Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning. Yan J; Bhadra P; Li A; Sethiya P; Qin L; Tai HK; Wong KH; Siu SWI Mol Ther Nucleic Acids; 2020 Jun; 20():882-894. PubMed ID: 32464552 [TBL] [Abstract][Full Text] [Related]
29. Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features. Singh O; Hsu WL; Su EC BMC Bioinformatics; 2021 Jul; 22(1):389. PubMed ID: 34330209 [TBL] [Abstract][Full Text] [Related]
30. Using an Ensemble to Identify and Classify Macroalgae Antimicrobial Peptides. Caprani MC; Healy J; Slattery O; O'Keeffe J Interdiscip Sci; 2021 Jun; 13(2):321-333. PubMed ID: 33978916 [TBL] [Abstract][Full Text] [Related]
31. iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Xiao X; Wang P; Lin WZ; Jia JH; Chou KC Anal Biochem; 2013 May; 436(2):168-77. PubMed ID: 23395824 [TBL] [Abstract][Full Text] [Related]
32. Very Short and Stable Lactoferricin-Derived Antimicrobial Peptides: Design Principles and Potential Uses. Svendsen JSM; Grant TM; Rennison D; Brimble MA; Svenson J Acc Chem Res; 2019 Mar; 52(3):749-759. PubMed ID: 30829472 [TBL] [Abstract][Full Text] [Related]
33. Machine Learning Prediction of Antimicrobial Peptides. Wang G; Vaisman II; van Hoek ML Methods Mol Biol; 2022; 2405():1-37. PubMed ID: 35298806 [TBL] [Abstract][Full Text] [Related]
34. An advanced approach to identify antimicrobial peptides and their function types for penaeus through machine learning strategies. Lin Y; Cai Y; Liu J; Lin C; Liu X BMC Bioinformatics; 2019 Jun; 20(Suppl 8):291. PubMed ID: 31182007 [TBL] [Abstract][Full Text] [Related]
35. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides. Gull S; Shamim N; Minhas F Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306 [TBL] [Abstract][Full Text] [Related]
36. iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types. Xiao X; Shao YT; Cheng X; Stamatovic B Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34086856 [TBL] [Abstract][Full Text] [Related]
37. Peptidomics-based identification of an antimicrobial peptide derived from goat milk fermented by Lactobacillus rhamnosus (C25). Iram D; Kindarle UA; Sansi MS; Meena S; Puniya AK; Vij S J Food Biochem; 2022 Dec; 46(12):e14450. PubMed ID: 36226982 [TBL] [Abstract][Full Text] [Related]
38. Van Moll L; De Smet J; Paas A; Tegtmeier D; Vilcinskas A; Cos P; Van Campenhout L Microbiol Spectr; 2022 Feb; 10(1):e0166421. PubMed ID: 34985302 [TBL] [Abstract][Full Text] [Related]
39. How do antimicrobial peptides disrupt the lipopolysaccharide membrane leaflet of Gram-negative bacteria? Gong H; Hu X; Zhang L; Fa K; Liao M; Liu H; Fragneto G; Campana M; Lu JR J Colloid Interface Sci; 2023 May; 637():182-192. PubMed ID: 36701864 [TBL] [Abstract][Full Text] [Related]
40. Identifying anti-coronavirus peptides by incorporating different negative datasets and imbalanced learning strategies. Pang Y; Wang Z; Jhong JH; Lee TY Brief Bioinform; 2021 Mar; 22(2):1085-1095. PubMed ID: 33497434 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]