These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31155755)

  • 1. Electrode polarization effects on interfacial kinetics of ionic liquid at graphite surface: An extended lagrangian-based constant potential molecular dynamics simulation study.
    Inagaki T; Nagaoka M
    J Comput Chem; 2019 Sep; 40(24):2131-2145. PubMed ID: 31155755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature effects on the capacitance of an imidazolium-based ionic liquid on a graphite electrode: a molecular dynamics simulation.
    Liu X; Han Y; Yan T
    Chemphyschem; 2014 Aug; 15(12):2503-9. PubMed ID: 24986545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A polarizable molecular dynamics method for electrode-electrolyte interfacial electron transfer under the constant chemical-potential-difference condition on the electrode electrons.
    Takahashi K; Nakano H; Sato H
    J Chem Phys; 2020 Aug; 153(5):054126. PubMed ID: 32770929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers.
    Haskins JB; Lawson JW
    J Chem Phys; 2016 May; 144(18):184707. PubMed ID: 27179500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxation of the electrical double layer after an electron transfer approached by Brownian dynamics simulation.
    Grün F; Jardat M; Turq P; Amatore C
    J Chem Phys; 2004 May; 120(20):9648-55. PubMed ID: 15267978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical interface between an ionic liquid and a model metallic electrode.
    Reed SK; Lanning OJ; Madden PA
    J Chem Phys; 2007 Feb; 126(8):084704. PubMed ID: 17343466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of extended space charge in concentration polarization.
    Rubinstein I; Zaltzman B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061502. PubMed ID: 20866420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular dynamics simulation study of the electric double layer and capacitance of [BMIM][PF6] and [BMIM][BF4] room temperature ionic liquids near charged surfaces.
    Hu Z; Vatamanu J; Borodin O; Bedrov D
    Phys Chem Chem Phys; 2013 Sep; 15(34):14234-47. PubMed ID: 23873305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfaces of dicationic ionic liquids and graphene: a molecular dynamics simulation study.
    Li S; Feng G; Cummings PT
    J Phys Condens Matter; 2014 Jul; 26(28):284106. PubMed ID: 24920318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface structure at the ionic liquid-electrified metal interface.
    Baldelli S
    Acc Chem Res; 2008 Mar; 41(3):421-31. PubMed ID: 18232666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Influence of Anion Shape on the Electrical Double Layer Microstructure and Capacitance of Ionic Liquids-Based Supercapacitors by Molecular Simulations.
    Chen M; Li S; Feng G
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28212336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating Electrochemical Systems by Combining the Finite Field Method with a Constant Potential Electrode.
    Dufils T; Jeanmairet G; Rotenberg B; Sprik M; Salanne M
    Phys Rev Lett; 2019 Nov; 123(19):195501. PubMed ID: 31765198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weighing the surface charge of an ionic liquid.
    Hjalmarsson N; Wallinder D; Glavatskih S; Atkin R; Aastrup T; Rutland MW
    Nanoscale; 2015 Oct; 7(38):16039-45. PubMed ID: 26370450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and Li
    Boyer MJ; Vilčiauskas L; Hwang GS
    Phys Chem Chem Phys; 2016 Oct; 18(40):27868-27876. PubMed ID: 27711674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of applied voltage on water at a gold electrode interface from
    Goldsmith ZK; Calegari Andrade MF; Selloni A
    Chem Sci; 2021 Mar; 12(16):5865-5873. PubMed ID: 34168811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A "counter-charge layer in generalized solvents" framework for electrical double layers in neat and hybrid ionic liquid electrolytes.
    Feng G; Huang J; Sumpter BG; Meunier V; Qiao R
    Phys Chem Chem Phys; 2011 Aug; 13(32):14723-34. PubMed ID: 21755079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular simulations of the electric double layer structure, differential capacitance, and charging kinetics for N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide at graphite electrodes.
    Vatamanu J; Borodin O; Smith GD
    J Phys Chem B; 2011 Mar; 115(12):3073-84. PubMed ID: 21384838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass distribution and diffusion of [1-butyl-3-methylimidazolium][Y] ionic liquids adsorbed on the graphite surface at 300-800 K.
    Dou Q; Sha M; Fu H; Wu G
    Chemphyschem; 2010 Aug; 11(11):2438-43. PubMed ID: 20623574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the charging dynamics of an ionic liquid electric double layer capacitor via molecular dynamics simulations.
    Noh C; Jung Y
    Phys Chem Chem Phys; 2019 Mar; 21(13):6790-6800. PubMed ID: 30735216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite.
    Black JM; Walters D; Labuda A; Feng G; Hillesheim PC; Dai S; Cummings PT; Kalinin SV; Proksch R; Balke N
    Nano Lett; 2013; 13(12):5954-60. PubMed ID: 24215396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.