These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31155857)

  • 1. The roles of spatial frequency in category-level visual search of real-world scenes.
    Zhang Q; Li S
    Psych J; 2020 Feb; 9(1):44-55. PubMed ID: 31155857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid scene categorization: role of spatial frequency order, accumulation mode and luminance contrast.
    Kauffmann L; Chauvin A; Guyader N; Peyrin C
    Vision Res; 2015 Feb; 107():49-57. PubMed ID: 25499838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarse-to-fine encoding of spatial frequency information into visual short-term memory for faces but impartial decay.
    Gao Z; Bentin S
    J Exp Psychol Hum Percept Perform; 2011 Aug; 37(4):1051-64. PubMed ID: 21500938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Twin mechanisms: Rapid scene recognition involves both feedforward and feedback processing.
    Zhang X; Sun Y; Liu W; Zhang Z; Wu B
    Acta Psychol (Amst); 2020 Jul; 208():103101. PubMed ID: 32485339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemispheric specialization of human inferior temporal cortex during coarse-to-fine and fine-to-coarse analysis of natural visual scenes.
    Peyrin C; Schwartz S; Seghier M; Michel C; Landis T; Vuilleumier P
    Neuroimage; 2005 Nov; 28(2):464-73. PubMed ID: 15993630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-Related Differences in Spatial Frequency Processing during Scene Categorization.
    Ramanoël S; Kauffmann L; Cousin E; Dojat M; Peyrin C
    PLoS One; 2015; 10(8):e0134554. PubMed ID: 26288146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Neural Bases of the Semantic Interference of Spatial Frequency-based Information in Scenes.
    Kauffmann L; Bourgin J; Guyader N; Peyrin C
    J Cogn Neurosci; 2015 Dec; 27(12):2394-405. PubMed ID: 26244724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coarse-to-fine information integration in human vision.
    Petras K; Ten Oever S; Jacobs C; Goffaux V
    Neuroimage; 2019 Feb; 186():103-112. PubMed ID: 30403971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of peripheral vision on object categorization in central vision.
    Roux-Sibilon A; Trouilloud A; Kauffmann L; Guyader N; Mermillod M; Peyrin C
    J Vis; 2019 Dec; 19(14):7. PubMed ID: 31826252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residual abilities in age-related macular degeneration to process spatial frequencies during natural scene categorization.
    Musel B; Hera R; Chokron S; Alleysson D; Chiquet C; Romanet JP; Guyader N; Peyrin C
    Vis Neurosci; 2011 Nov; 28(6):529-41. PubMed ID: 22192508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low Spatial Frequency Bias in Schizophrenia is Not Face Specific: When the Integration of Coarse and Fine Information Fails.
    Laprevote V; Oliva A; Ternois AS; Schwan R; Thomas P; Boucart M
    Front Psychol; 2013; 4():248. PubMed ID: 23653616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The neural substrates and timing of top-down processes during coarse-to-fine categorization of visual scenes: a combined fMRI and ERP study.
    Peyrin C; Michel CM; Schwartz S; Thut G; Seghier M; Landis T; Marendaz C; Vuilleumier P
    J Cogn Neurosci; 2010 Dec; 22(12):2768-80. PubMed ID: 20044901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial frequency processing in scene-selective cortical regions.
    Kauffmann L; Ramanoël S; Guyader N; Chauvin A; Peyrin C
    Neuroimage; 2015 May; 112():86-95. PubMed ID: 25754068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnostic parts are not exclusive in the search template for real-world object categories.
    Wurth M; Reeder RR
    Acta Psychol (Amst); 2019 May; 196():11-17. PubMed ID: 30939331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective connectivity in the neural network underlying coarse-to-fine categorization of visual scenes. A dynamic causal modeling study.
    Kauffmann L; Chauvin A; Pichat C; Peyrin C
    Brain Cogn; 2015 Oct; 99():46-56. PubMed ID: 26232267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contents of the search template for category-level search in natural scenes.
    Reeder RR; Peelen MV
    J Vis; 2013 Jun; 13(3):13. PubMed ID: 23750015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of low and high spatial frequency processing to impaired object recognition circuitry in schizophrenia.
    Calderone DJ; Hoptman MJ; Martínez A; Nair-Collins S; Mauro CJ; Bar M; Javitt DC; Butler PD
    Cereb Cortex; 2013 Aug; 23(8):1849-58. PubMed ID: 22735157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting gist-based and template-based guidance during real-world visual search.
    Bahle B; Matsukura M; Hollingworth A
    J Exp Psychol Hum Percept Perform; 2018 Mar; 44(3):367-386. PubMed ID: 28795834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of target template specificity on visual search in real-world scenes: evidence from eye movements.
    Malcolm GL; Henderson JM
    J Vis; 2009 Oct; 9(11):8.1-13. PubMed ID: 20053071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The neural bases of spatial frequency processing during scene perception.
    Kauffmann L; Ramanoël S; Peyrin C
    Front Integr Neurosci; 2014; 8():37. PubMed ID: 24847226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.