These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. A novel bicistronic gene design couples stable cell line selection with a fucose switch in a designer CHO host to produce native and afucosylated glycoform antibodies. Roy G; Martin T; Barnes A; Wang J; Jimenez RB; Rice M; Li L; Feng H; Zhang S; Chaerkady R; Wu H; Marelli M; Hatton D; Zhu J; Bowen MA MAbs; 2018 Apr; 10(3):416-430. PubMed ID: 29400603 [TBL] [Abstract][Full Text] [Related]
23. A comparative study of different vector designs for the mammalian expression of recombinant IgG antibodies. Li J; Menzel C; Meier D; Zhang C; Dübel S; Jostock T J Immunol Methods; 2007 Jan; 318(1-2):113-24. PubMed ID: 17161420 [TBL] [Abstract][Full Text] [Related]
24. Reducing recombinant protein expression during CHO pool selection enhances frequency of high-producing cells. Poulain A; Mullick A; Massie B; Durocher Y J Biotechnol; 2019 Apr; 296():32-41. PubMed ID: 30885656 [TBL] [Abstract][Full Text] [Related]
25. Utilization of the human gamma-satellite insulator for the enhancement of anti-PCSK9 monoclonal antibody expression in Chinese hamster ovary cells. Mahboudi S; Moosavi-Nasab M; Kazemi B; Rahimpour A; Eskandari MH; Mohammadian O; Shams F Mol Biol Rep; 2021 May; 48(5):4405-4412. PubMed ID: 34089466 [TBL] [Abstract][Full Text] [Related]
26. Model-directed engineering of "difficult-to-express" monoclonal antibody production by Chinese hamster ovary cells. Pybus LP; Dean G; West NR; Smith A; Daramola O; Field R; Wilkinson SJ; James DC Biotechnol Bioeng; 2014 Feb; 111(2):372-85. PubMed ID: 24081924 [TBL] [Abstract][Full Text] [Related]
27. Conditional expression of full-length humanized anti-prion protein antibodies in Chinese hamster ovary cells. Mueller DA; Heinig L; Ramljak S; Krueger A; Schulte R; Wrede A; Stuke AW Hybridoma (Larchmt); 2010 Dec; 29(6):463-72. PubMed ID: 21087094 [TBL] [Abstract][Full Text] [Related]
28. High-level recombinant protein production in CHO cells using lentiviral vectors and the cumate gene-switch. Gaillet B; Gilbert R; Broussau S; Pilotte A; Malenfant F; Mullick A; Garnier A; Massie B Biotechnol Bioeng; 2010 Jun; 106(2):203-15. PubMed ID: 20178120 [TBL] [Abstract][Full Text] [Related]
29. Generation of stable, high-producing CHO cell lines by lentiviral vector-mediated gene transfer in serum-free suspension culture. Oberbek A; Matasci M; Hacker DL; Wurm FM Biotechnol Bioeng; 2011 Mar; 108(3):600-10. PubMed ID: 20967750 [TBL] [Abstract][Full Text] [Related]
30. Transient and stable CHO expression, purification and characterization of novel hetero-dimeric bispecific IgG antibodies. Rajendra Y; Peery RB; Hougland MD; Barnard GC; Wu X; Fitchett JR; Bacica M; Demarest SJ Biotechnol Prog; 2017 Mar; 33(2):469-477. PubMed ID: 27977915 [TBL] [Abstract][Full Text] [Related]
31. On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Schlatter S; Stansfield SH; Dinnis DM; Racher AJ; Birch JR; James DC Biotechnol Prog; 2005; 21(1):122-33. PubMed ID: 15903249 [TBL] [Abstract][Full Text] [Related]
32. Lengthening of high-yield production levels of monoclonal antibody-producing Chinese hamster ovary cells by downregulation of breast cancer 1. Matsuyama R; Yamano N; Kawamura N; Omasa T J Biosci Bioeng; 2017 Mar; 123(3):382-389. PubMed ID: 27742176 [TBL] [Abstract][Full Text] [Related]
33. The effect of Ccnb1ip1 insulator on monoclonal antibody expression in Chinese hamster ovary cells. Rahimpour A; Pourmaleki E; Shams F; Payandeh Z; Pourzardosht N; Didehdar M; Gholami M Mol Biol Rep; 2022 May; 49(5):3461-3468. PubMed ID: 35076847 [TBL] [Abstract][Full Text] [Related]
35. Regulation of recombinant monoclonal antibody production in chinese hamster ovary cells: a comparative study of gene copy number, mRNA level, and protein expression. Jiang Z; Huang Y; Sharfstein ST Biotechnol Prog; 2006; 22(1):313-8. PubMed ID: 16454525 [TBL] [Abstract][Full Text] [Related]
36. Utilizing targeted integration CHO pools to potentially accelerate the GMP manufacturing of monoclonal and bispecific antibodies. Barnard GC; Zhou M; Shen A; Yuk IH; Laird MW Biotechnol Prog; 2024; 40(1):e3399. PubMed ID: 37874920 [TBL] [Abstract][Full Text] [Related]
37. Predicting the expression of recombinant monoclonal antibodies in Chinese hamster ovary cells based on sequence features of the CDR3 domain. Pybus LP; James DC; Dean G; Slidel T; Hardman C; Smith A; Daramola O; Field R Biotechnol Prog; 2014; 30(1):188-97. PubMed ID: 24311306 [TBL] [Abstract][Full Text] [Related]
38. Improving the expression of anti-IL-2Rα monoclonal antibody in the CHO cells through optimization of the expression vector and translation efficiency. Hoseinpoor R; Kazemi B; Rajabibazl M; Rahimpour A J Biotechnol; 2020 Dec; 324():112-120. PubMed ID: 33007349 [TBL] [Abstract][Full Text] [Related]
39. Non-integrating lentiviral vectors based on the minimal S/MAR sequence retain transgene expression in dividing cells. Xu Z; Chen F; Zhang L; Lu J; Xu P; Liu G; Xie X; Mu W; Wang Y; Liu D Sci China Life Sci; 2016 Oct; 59(10):1024-1033. PubMed ID: 27614752 [TBL] [Abstract][Full Text] [Related]
40. Autoregulated, bidirectional and multicistronic gas-inducible mammalian as well as lentiviral expression vectors. Hartenbach S; Fussenegger M J Biotechnol; 2005 Oct; 120(1):83-98. PubMed ID: 16026881 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]