These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31156276)

  • 1. Improved Methodology for the Synthesis of a Cathepsin B Cleavable Dipeptide Linker, Widely Used in Antibody-Drug Conjugate Research.
    Mondal D; Ford J; Pinney KG
    Tetrahedron Lett; 2018 Oct; 59(40):3594-3599. PubMed ID: 31156276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid, High-Yielding Solid-Phase Synthesis of Cathepsin-B Cleavable Linkers for Targeted Cancer Therapeutics.
    Pryyma A; Gunasekera S; Lewin J; Perrin DM
    Bioconjug Chem; 2020 Dec; 31(12):2685-2690. PubMed ID: 33274932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immolation of p-Aminobenzyl Ether Linker and Payload Potency and Stability Determine the Cell-Killing Activity of Antibody-Drug Conjugates with Phenol-Containing Payloads.
    Zhang D; Le H; Cruz-Chuh JD; Bobba S; Guo J; Staben L; Zhang C; Ma Y; Kozak KR; Lewis Phillips GD; Vollmar BS; Sadowsky JD; Vandlen R; Wei B; Su D; Fan P; Dragovich PS; Khojasteh SC; Hop CECA; Pillow TH
    Bioconjug Chem; 2018 Feb; 29(2):267-274. PubMed ID: 29369629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Enzyme-Cleavable Oligonucleotides by Automated Solid-Phase Incorporation of Cathepsin B Sensitive Dipeptide Linkers.
    Jin C; Ei-Sagheer AH; Li S; Vallis KA; Tan W; Brown T
    Angew Chem Weinheim Bergstr Ger; 2022 Mar; 134(13):e202114016. PubMed ID: 38505643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Enzyme-Cleavable Oligonucleotides by Automated Solid-Phase Incorporation of Cathepsin B Sensitive Dipeptide Linkers.
    Jin C; Ei-Sagheer AH; Li S; Vallis KA; Tan W; Brown T
    Angew Chem Int Ed Engl; 2022 Mar; 61(13):e202114016. PubMed ID: 34953094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the activity, lysosomal stability, and efficacy of legumain-cleavable and cathepsin-cleavable ADC linkers.
    Gray ME; Zielinski KM; Xu F; Elder KK; McKay SJ; Ojo VT; Benjamin SR; Yaseen AA; Brooks TA; Tumey LN
    Xenobiotica; 2024 Aug; 54(8):458-468. PubMed ID: 38738708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cathepsin B Is Dispensable for Cellular Processing of Cathepsin B-Cleavable Antibody-Drug Conjugates.
    Caculitan NG; Dela Cruz Chuh J; Ma Y; Zhang D; Kozak KR; Liu Y; Pillow TH; Sadowsky J; Cheung TK; Phung Q; Haley B; Lee BC; Akita RW; Sliwkowski MX; Polson AG
    Cancer Res; 2017 Dec; 77(24):7027-7037. PubMed ID: 29046337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potent antitumor activity of anti-HER2 antibody-topoisomerase I inhibitor conjugate based on self-immolative dendritic dimeric-linker.
    Liubomirski Y; Tiram G; Scomparin A; Gnaim S; Das S; Gholap S; Ge L; Yeini E; Shelef O; Zauberman A; Berger N; Kalimi D; Toister-Achituv M; Schröter C; Dickgiesser S; Tonillo J; Shan M; Deutsch C; Sweeney-Lasch S; Shabat D; Satchi-Fainaro R
    J Control Release; 2024 Mar; 367():148-157. PubMed ID: 38228272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Late-Stage Desulfurization Enables Rapid and Efficient Solid-Phase Synthesis of Cathepsin-Cleavable Linkers for Antibody-Drug Conjugates.
    Ahangarpour M; Brimble MA; Kavianinia I
    Bioconjug Chem; 2024 Jul; 35(7):1007-1014. PubMed ID: 38874557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing Lysosomal Activation of Antibody-Drug Conjugates (ADCs) by Incorporation of Novel Cleavable Dipeptide Linkers.
    Salomon PL; Reid EE; Archer KE; Harris L; Maloney EK; Wilhelm AJ; Miller ML; Chari RVJ; Keating TA; Singh R
    Mol Pharm; 2019 Dec; 16(12):4817-4825. PubMed ID: 31609629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protease-Cleavable Linkers Modulate the Anticancer Activity of Noninternalizing Antibody-Drug Conjugates.
    Dal Corso A; Cazzamalli S; Gébleux R; Mattarella M; Neri D
    Bioconjug Chem; 2017 Jul; 28(7):1826-1833. PubMed ID: 28662334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibody drug conjugates beyond cytotoxic payloads.
    Hobson AD
    Prog Med Chem; 2023; 62():1-59. PubMed ID: 37981349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysosomal-Cleavable Peptide Linkers in Antibody-Drug Conjugates.
    Balamkundu S; Liu CF
    Biomedicines; 2023 Nov; 11(11):. PubMed ID: 38002080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Synthesis of Isoquinolidinobenzodiazepine Dimers, a Novel Class of Antibody-Drug Conjugate Payload.
    Smith SW; Jammalamadaka V; Borkin D; Zhu J; Degrado SJ; Lu J; Huang J; Jiang YP; Jain N; Junutula JR
    ACS Med Chem Lett; 2018 Jan; 9(1):56-60. PubMed ID: 29348812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular and automated synthesis of oligonucleotide-small molecule conjugates for cathepsin B mediated traceless release of payloads.
    Jin C; Li S; Vallis KA; El-Sagheer AH; Brown T
    RSC Chem Biol; 2024 Jul; 5(8):738-744. PubMed ID: 39092443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfatase-cleavable linkers for antibody-drug conjugates.
    Bargh JD; Walsh SJ; Isidro-Llobet A; Omarjee S; Carroll JS; Spring DR
    Chem Sci; 2020 Jan; 11(9):2375-2380. PubMed ID: 34084399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of Hydrophilic Macrocycles Into Drug-Linker Reagents Produces Antibody-Drug Conjugates With Enhanced
    Evans N; Grygorash R; Williams P; Kyle A; Kantner T; Pathak R; Sheng X; Simoes F; Makwana H; Resende R; de Juan E; Jenkins A; Morris D; Michelet A; Jewitt F; Rudge F; Camper N; Manin A; McDowell W; Pabst M; Godwin A; Frigerio M; Bird M
    Front Pharmacol; 2022; 13():764540. PubMed ID: 35784686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of cathepsin B-sensitive triggers and hydrophilic linkers on in vitro efficacy of novel site-specific antibody-drug conjugates.
    Bryden F; Martin C; Letast S; Lles E; Viéitez-Villemin I; Rousseau A; Colas C; Brachet-Botineau M; Allard-Vannier E; Larbouret C; Viaud-Massuard MC; Joubert N
    Org Biomol Chem; 2018 Mar; 16(11):1882-1889. PubMed ID: 29473076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of Potent and Selective Antibody-Drug Conjugates with Eg5 Inhibitors through Linker and Payload Optimization.
    Karpov AS; Nieto-Oberhuber CM; Abrams T; Beng-Louka E; Blanco E; Chamoin S; Chene P; Dacquignies I; Daniel D; Dillon MP; Doumampouom-Metoul L; Drosos N; Fedoseev P; Furegati M; Granda B; Grotzfeld RM; Hess Clark S; Joly E; Jones D; Lacaud-Baumlin M; Lagasse-Guerro S; Lorenzana EG; Mallet W; Martyniuk P; Marzinzik AL; Mesrouze Y; Nocito S; Oei Y; Perruccio F; Piizzi G; Richard E; Rudewicz PJ; Schindler P; Velay M; Venstrom K; Wang P; Zurini M; Lafrance M
    ACS Med Chem Lett; 2019 Dec; 10(12):1674-1679. PubMed ID: 31857845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing the enzymatic release of MMAE from
    Zambra M; Ranđelović I; Talarico F; Borbély A; Svajda L; Tóvári J; Mező G; Bodero L; Colombo S; Arrigoni F; Fasola E; Gazzola S; Piarulli U
    Front Pharmacol; 2023; 14():1215694. PubMed ID: 37492088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.