These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31156418)

  • 1. A Variable Stiffness Actuator Module With Favorable Mass Distribution for a Bio-inspired Biped Robot.
    Rodriguez-Cianca D; Weckx M; Jimenez-Fabian R; Torricelli D; Gonzalez-Vargas J; Sanchez-Villamañan MC; Sartori M; Berns K; Vanderborght B; Pons JL; Lefeber D
    Front Neurorobot; 2019; 13():20. PubMed ID: 31156418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and control of a novel variable stiffness actuator based on antagonistic variable radius principle.
    Sun X; Xiong X; Chen W; Chen W; Yang G
    ISA Trans; 2024 Apr; 147():567-576. PubMed ID: 38378403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Printable Ball Joints with Variable Stiffness for Robotic Applications Based on Soft Pneumatic Elastomer Actuators.
    Guo J; Low JH; Liu J; Li Y; Liu Z; Yeow CH
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis and control of biped robot with variable stiffness ankle joints.
    Lin Z; Zang X; Zhang X; Liu Y; Heng S
    Technol Health Care; 2020; 28(S1):453-462. PubMed ID: 32364178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Configurable Architecture for Two Degree-of-Freedom Variable Stiffness Actuators to Match the Compliant Behavior of Human Joints.
    Lemerle S; Catalano MG; Bicchi A; Grioli G
    Front Robot AI; 2021; 8():614145. PubMed ID: 33791339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-precision dynamic torque control of high stiffness actuator for humanoids.
    Liu Y; Chen X; Yu Z; Yu H; Meng L; Yokoi H
    ISA Trans; 2023 Oct; 141():401-413. PubMed ID: 37474435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conceptual mechanical design of antagonistic variable stiffness joint based on equivalent quadratic torsion spring.
    Guo J
    Sci Prog; 2020; 103(3):36850420941295. PubMed ID: 32672104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cascade Control of Antagonistic VSA-An Engineering Control Approach to a Bioinspired Robot Actuator.
    Lukić B; Jovanović K; Šekara TB
    Front Neurorobot; 2019; 13():69. PubMed ID: 31551746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and control of a pneumatic musculoskeletal biped robot.
    Zang X; Liu Y; Liu X; Zhao J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S443-54. PubMed ID: 27163303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and torque control base on neural network PID of a variable stiffness joint for rehabilitation robot.
    Hu B; Mao B; Lu S; Yu H
    Front Neurorobot; 2022; 16():1007324. PubMed ID: 36467565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Spider-Inspired Rotary-Rolling Diaphragm Actuator with Linear Torque Characteristic and High Mechanical Efficiency.
    Hepp J; Badri-Spröwitz A
    Soft Robot; 2022 Apr; 9(2):364-375. PubMed ID: 34166108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stiffness Change for Reconfiguration of Inflated Beam Robots.
    Do BH; Wu S; Zhao RR; Okamura AM
    Soft Robot; 2024 Apr; ():. PubMed ID: 38683643
    [No Abstract]   [Full Text] [Related]  

  • 15. Design, Analysis, and Evaluation of a Remotely Actuated MRI-Compatible Neurosurgical Robot.
    Wang X; Cheng SS; Desai JP
    IEEE Robot Autom Lett; 2018 Jul; 3(3):2144-2151. PubMed ID: 30386822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A lobster-inspired bending module for compliant robotic applications.
    Chen Y; Chung H; Chen B; Baoyinjiya ; Sun Y
    Bioinspir Biomim; 2020 Jul; 15(5):056009. PubMed ID: 32531772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanics of Step Initiation After Balance Recovery With Implications for Humanoid Robot Locomotion.
    Miller Buffinton C; Buffinton EM; Bieryla KA; Pratt JE
    J Biomech Eng; 2016 Mar; 138(3):4032468. PubMed ID: 26769330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling and Control of a 2-DOF Robot Arm with Elastic Joints for Safe Human-Robot Interaction.
    Tuan HM; Sanfilippo F; Hao NV
    Front Robot AI; 2021; 8():679304. PubMed ID: 34490356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal combination of minimum degrees of freedom to be actuated in the lower limbs to facilitate arm-free paraplegic standing.
    Kim JY; Mills JK; Vette AH; Popovic MR
    J Biomech Eng; 2007 Dec; 129(6):838-47. PubMed ID: 18067387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New soft robots really suck: Vacuum-powered systems empower diverse capabilities.
    Robertson MA; Paik J
    Sci Robot; 2017 Aug; 2(9):. PubMed ID: 33157853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.