These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31156679)

  • 41. Increased branching independent of strigolactone in cytokinin oxidase 2-overexpressing tomato is mediated by reduced auxin transport.
    Pino LE; Lima JE; Vicente MH; de Sá AFL; Pérez-Alfocea F; Albacete A; Costa JL; Werner T; Schmülling T; Freschi L; Figueira A; Zsögön A; Peres LEP
    Mol Hortic; 2022 May; 2(1):12. PubMed ID: 37789497
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting.
    Rubio-Moraga A; Ahrazem O; Pérez-Clemente RM; Gómez-Cadenas A; Yoneyama K; López-Ráez JA; Molina RV; Gómez-Gómez L
    BMC Plant Biol; 2014 Jun; 14():171. PubMed ID: 24947472
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Genome-wide identification and effect of
    Li J; Shi C; Sun Y; Gao C; ZhANG Y; Tan M; Liang B
    Sheng Wu Gong Cheng Xue Bao; 2022 Oct; 38(10):3728-3739. PubMed ID: 36305406
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida.
    Barbier F; Péron T; Lecerf M; Perez-Garcia MD; Barrière Q; Rolčík J; Boutet-Mercey S; Citerne S; Lemoine R; Porcheron B; Roman H; Leduc N; Le Gourrierec J; Bertheloot J; Sakr S
    J Exp Bot; 2015 May; 66(9):2569-82. PubMed ID: 25873679
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Non-dormant Axillary Bud 1 regulates axillary bud outgrowth in sorghum.
    Chen J; Zhang L; Zhu M; Han L; Lv Y; Liu Y; Li P; Jing H; Cai H
    J Integr Plant Biol; 2018 Oct; 60(10):938-955. PubMed ID: 29740955
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier
    Shen J; Zhang Y; Ge D; Wang Z; Song W; Gu R; Che G; Cheng Z; Liu R; Zhang X
    Proc Natl Acad Sci U S A; 2019 Aug; 116(34):17105-17114. PubMed ID: 31391306
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Auxin-cytokinin interactions in the control of shoot branching.
    Shimizu-Sato S; Tanaka M; Mori H
    Plant Mol Biol; 2009 Mar; 69(4):429-35. PubMed ID: 18974937
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Growing Stem Inhibits Bud Outgrowth - The Overlooked Theory of Apical Dominance.
    Kebrom TH
    Front Plant Sci; 2017; 8():1874. PubMed ID: 29163599
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Auxin and CmAP1 regulate the reproductive development of axillary buds in Chinese chestnut (Castanea mollissima).
    Cheng Y; Cheng L; Hu G; Guo X; Lan Y
    Plant Cell Rep; 2023 Feb; 42(2):287-296. PubMed ID: 36528704
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Auxin and cytokinin related gene expression during active shoot growth and latent bud paradormancy in Vitis riparia grapevine.
    He D; Mathiason K; Fennell A
    J Plant Physiol; 2012 Apr; 169(6):643-8. PubMed ID: 22321693
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice.
    Zhang S; Li G; Fang J; Chen W; Jiang H; Zou J; Liu X; Zhao X; Li X; Chu C; Xie Q; Jiang X; Zhu L
    J Integr Plant Biol; 2010 Jul; 52(7):626-38. PubMed ID: 20590993
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The gravity-regulated growth of axillary buds is mediated by a mechanism different from decapitation-induced release.
    Kitazawa D; Miyazawa Y; Fujii N; Hoshino A; Iida S; Nitasaka E; Takahashi H
    Plant Cell Physiol; 2008 Jun; 49(6):891-900. PubMed ID: 18420594
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Red to Far-Red Light Ratio Modulates Hormonal and Genetic Control of Axillary bud Outgrowth in Chrysanthemum (
    Yuan C; Ahmad S; Cheng T; Wang J; Pan H; Zhao L; Zhang Q
    Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29843424
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cyclanilide Induces Lateral Bud Outgrowth by Modulating Cytokinin Biosynthesis and Signalling Pathways in Apple Identified via Transcriptome Analysis.
    Ma J; Xie L; Zhao Q; Sun Y; Zhang D
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054767
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato.
    Xia X; Dong H; Yin Y; Song X; Gu X; Sang K; Zhou J; Shi K; Zhou Y; Foyer CH; Yu J
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33836559
    [TBL] [Abstract][Full Text] [Related]  

  • 56.
    Seale M; Bennett T; Leyser O
    Development; 2017 May; 144(9):1661-1673. PubMed ID: 28289131
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Whole genome re-sequencing and transcriptome reveal an alteration in hormone signal transduction in a more-branching mutant of apple.
    Ge H; Li G; Wan S; Zhao A; Huang Y; Ma R; Zhang R; Song Y; Sha G
    Gene; 2022 Apr; 818():146214. PubMed ID: 35066064
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1.
    van Rongen M; Bennett T; Ticchiarelli F; Leyser O
    PLoS Genet; 2019 Mar; 15(3):e1008023. PubMed ID: 30865619
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Roles of DgBRC1 in regulation of lateral branching in chrysanthemum (Dendranthema ×grandiflora cv. Jinba).
    Chen X; Zhou X; Xi L; Li J; Zhao R; Ma N; Zhao L
    PLoS One; 2013; 8(4):e61717. PubMed ID: 23613914
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New genes in the strigolactone-related shoot branching pathway.
    Beveridge CA; Kyozuka J
    Curr Opin Plant Biol; 2010 Feb; 13(1):34-9. PubMed ID: 19913454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.