BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31157311)

  • 1. Topological reinforcement as a principle of modularity emergence in brain networks.
    Damicelli F; Hilgetag CC; Hütt MT; Messé A
    Netw Neurosci; 2019; 3(2):589-605. PubMed ID: 31157311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular topology emerges from plasticity in a minimalistic excitable network model.
    Damicelli F; Hilgetag CC; Hütt MT; Messé A
    Chaos; 2017 Apr; 27(4):047406. PubMed ID: 28456166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular and hierarchically modular organization of brain networks.
    Meunier D; Lambiotte R; Bullmore ET
    Front Neurosci; 2010; 4():200. PubMed ID: 21151783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of Modular Structure in a Large-Scale Brain Network with Interactions between Dynamics and Connectivity.
    Stam CJ; Hillebrand A; Wang H; Van Mieghem P
    Front Comput Neurosci; 2010; 4():. PubMed ID: 20953245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related changes in modular organization of human brain functional networks.
    Meunier D; Achard S; Morcom A; Bullmore E
    Neuroimage; 2009 Feb; 44(3):715-23. PubMed ID: 19027073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spike signal transmission between modules and the predictability of spike activity in modular neuronal networks.
    Yuan Y; Liu J; Zhao P; Huo H; Fang T
    J Theor Biol; 2021 Oct; 526():110811. PubMed ID: 34133949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia.
    Alexander-Bloch AF; Gogtay N; Meunier D; Birn R; Clasen L; Lalonde F; Lenroot R; Giedd J; Bullmore ET
    Front Syst Neurosci; 2010; 4():147. PubMed ID: 21031030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks.
    Messé A; Hütt MT; König P; Hilgetag CC
    Sci Rep; 2015 Jan; 5():7870. PubMed ID: 25598302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic analysis of modularity in protein interaction networks.
    Erten S; Li X; Bebek G; Li J; Koyutürk M
    BMC Bioinformatics; 2009 Oct; 10():333. PubMed ID: 19828041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The envirome and the connectome: exploring the structural noise in the human brain associated with socioeconomic deprivation.
    Krishnadas R; Kim J; McLean J; Batty GD; McLean JS; Millar K; Packard CJ; Cavanagh J
    Front Hum Neurosci; 2013; 7():722. PubMed ID: 24273501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered topological organization of resting-state functional networks in children with infantile spasms.
    Wang Y; Li Y; Yang L; Huang W
    Front Neurosci; 2022; 16():952940. PubMed ID: 36248635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular co-evolution of metabolic networks.
    Zhao J; Ding GH; Tao L; Yu H; Yu ZH; Luo JH; Cao ZW; Li YX
    BMC Bioinformatics; 2007 Aug; 8():311. PubMed ID: 17723146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.
    Ellefsen KO; Mouret JB; Clune J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004128. PubMed ID: 25837826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generative models of rich clubs in Hebbian neuronal networks and large-scale human brain networks.
    Vértes PE; Alexander-Bloch A; Bullmore ET
    Philos Trans R Soc Lond B Biol Sci; 2014 Oct; 369(1653):. PubMed ID: 25180309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing modular architecture of human brain structural networks by using cortical thickness from MRI.
    Chen ZJ; He Y; Rosa-Neto P; Germann J; Evans AC
    Cereb Cortex; 2008 Oct; 18(10):2374-81. PubMed ID: 18267952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold.
    Bordier C; Nicolini C; Bifone A
    Front Neurosci; 2017; 11():441. PubMed ID: 28824364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular Organization of Functional Network Connectivity in Healthy Controls and Patients with Schizophrenia during the Resting State.
    Yu Q; Plis SM; Erhardt EB; Allen EA; Sui J; Kiehl KA; Pearlson G; Calhoun VD
    Front Syst Neurosci; 2011; 5():103. PubMed ID: 22275887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local inhibitory plasticity tunes macroscopic brain dynamics and allows the emergence of functional brain networks.
    Hellyer PJ; Jachs B; Clopath C; Leech R
    Neuroimage; 2016 Jan; 124(Pt A):85-95. PubMed ID: 26348562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular structure of brain functional networks: breaking the resolution limit by Surprise.
    Nicolini C; Bifone A
    Sci Rep; 2016 Jan; 6():19250. PubMed ID: 26763931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Scale Network Analysis of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Comparative Study.
    Kaushal M; Oni-Orisan A; Chen G; Li W; Leschke J; Ward D; Kalinosky B; Budde M; Schmit B; Li SJ; Muqeet V; Kurpad S
    Brain Connect; 2017 Sep; 7(7):413-423. PubMed ID: 28657334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.