These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
461 related articles for article (PubMed ID: 31157500)
1. Single-Atom Catalysis Using Chromium Embedded in Divacant Graphene for Conversion of Dinitrogen to Ammonia. Riyaz M; Goel N Chemphyschem; 2019 Aug; 20(15):1954-1959. PubMed ID: 31157500 [TBL] [Abstract][Full Text] [Related]
2. Conversion of Dinitrogen to Ammonia by FeN3-Embedded Graphene. Li XF; Li QK; Cheng J; Liu L; Yan Q; Wu Y; Zhang XH; Wang ZY; Qiu Q; Luo Y J Am Chem Soc; 2016 Jul; 138(28):8706-9. PubMed ID: 27383680 [TBL] [Abstract][Full Text] [Related]
3. Interplay between Theory and Experiment for Ammonia Synthesis Catalyzed by Transition Metal Complexes. Tanaka H; Nishibayashi Y; Yoshizawa K Acc Chem Res; 2016 May; 49(5):987-95. PubMed ID: 27105472 [TBL] [Abstract][Full Text] [Related]
4. Can boron antisites of BNNTs be an efficient metal-free catalyst for nitrogen fixation? - A DFT investigation. Kumar CVS; Subramanian V Phys Chem Chem Phys; 2017 Jun; 19(23):15377-15387. PubMed ID: 28574553 [TBL] [Abstract][Full Text] [Related]
5. Role of Chemical Structure of Support in Enhancing the Catalytic Activity of a Single Atom Catalyst Toward NRR: A Computational Study. Senthamaraikannan TG; Kaliaperumal S; Krishnamurty S Front Chem; 2021; 9():733422. PubMed ID: 34568282 [TBL] [Abstract][Full Text] [Related]
6. Prognostication of two-dimensional transition-metal atoms embedded rectangular tetrafluorotetracyanoquinodimethane single-atom catalysts for high-efficiency electrochemical nitrogen reduction. Lv SY; Li G; Yang LM J Colloid Interface Sci; 2022 Sep; 621():24-32. PubMed ID: 35447519 [TBL] [Abstract][Full Text] [Related]
7. Can Li Atoms Anchored on Boron- and Nitrogen-Doped Graphene Catalyze Dinitrogen Molecules to Ammonia? A DFT Study. Singh Verma T; Paramita Samal P; Selvaraj K; Krishnamurty S Chemphyschem; 2023 Jun; 24(12):e202200750. PubMed ID: 36988033 [TBL] [Abstract][Full Text] [Related]
8. Theoretical screening of single atoms anchored on defective graphene for electrocatalytic N Liu P; Fu C; Li Y; Wei H Phys Chem Chem Phys; 2020 May; 22(17):9322-9329. PubMed ID: 32309840 [TBL] [Abstract][Full Text] [Related]
9. Jahn-Teller Distorted Effects To Promote Nitrogen Reduction over Keggin-Type Phosphotungstic Acid Catalysts: Insight from Density Functional Theory Calculations. Wang Y; Chen XM; Zhang LL; Liu CG Inorg Chem; 2019 Jun; 58(12):7852-7862. PubMed ID: 31141350 [TBL] [Abstract][Full Text] [Related]
10. Theoretical insights into the thermal reduction of N Fang Z; Wang Q; Li Y; Li Y; Huang S; Lin W; Chen W; Zhang Y J Chem Phys; 2021 Feb; 154(5):054703. PubMed ID: 33557547 [TBL] [Abstract][Full Text] [Related]
11. Single Mo Atom Supported on Defective Boron Nitride Monolayer as an Efficient Electrocatalyst for Nitrogen Fixation: A Computational Study. Zhao J; Chen Z J Am Chem Soc; 2017 Sep; 139(36):12480-12487. PubMed ID: 28800702 [TBL] [Abstract][Full Text] [Related]
12. Bimetallic Pairs Supported on Graphene as Efficient Electrocatalysts for Nitrogen Fixation: Search for the Optimal Coordination Atoms. Hu R; Li Y; Zeng Q; Wang F; Shang J ChemSusChem; 2020 Jul; 13(14):3636-3644. PubMed ID: 32367626 [TBL] [Abstract][Full Text] [Related]
13. Two-Dimensional Single-Atom Catalyst TM Zhao MR; Song B; Yang LM ACS Appl Mater Interfaces; 2021 Jun; 13(22):26109-26122. PubMed ID: 34038081 [TBL] [Abstract][Full Text] [Related]
14. Theoretical study of single transition metal atom modified MoP as a nitrogen reduction electrocatalyst. Han M; Wang G; Zhang H; Zhao H Phys Chem Chem Phys; 2019 Mar; 21(11):5950-5955. PubMed ID: 30815666 [TBL] [Abstract][Full Text] [Related]
15. Support effects on adsorption and catalytic activation of O Gao ZY; Yang WJ; Ding XL; Lv G; Yan WP Phys Chem Chem Phys; 2018 Mar; 20(10):7333-7341. PubMed ID: 29485652 [TBL] [Abstract][Full Text] [Related]
16. Synergistic Effect of Surface-Terminated Oxygen Vacancy and Single-Atom Catalysts on Defective MXenes for Efficient Nitrogen Fixation. Tang S; Liu T; Dang Q; Zhou X; Li X; Yang T; Luo Y; Sharman E; Jiang J J Phys Chem Lett; 2020 Jul; 11(13):5051-5058. PubMed ID: 32536165 [TBL] [Abstract][Full Text] [Related]
17. Ta Geng C; Li J; Weiske T; Schwarz H Proc Natl Acad Sci U S A; 2018 Nov; 115(46):11680-11687. PubMed ID: 30352846 [TBL] [Abstract][Full Text] [Related]
18. Ammonia Synthesis Under Ambient Conditions: Selective Electroreduction of Dinitrogen to Ammonia on Black Phosphorus Nanosheets. Zhang L; Ding LX; Chen GF; Yang X; Wang H Angew Chem Int Ed Engl; 2019 Feb; 58(9):2612-2616. PubMed ID: 30560583 [TBL] [Abstract][Full Text] [Related]
19. Tuning the electronic structure of transition metals embedded in nitrogen-doped graphene for electrocatalytic nitrogen reduction: a first-principles study. Zheng X; Yao Y; Wang Y; Liu Y Nanoscale; 2020 May; 12(17):9696-9707. PubMed ID: 32323698 [TBL] [Abstract][Full Text] [Related]
20. Nitrogen activation to reduction on a recyclable V-SAC/BN-graphene heterocatalyst sifted through dual and multiphilic descriptors. Maibam A; Krishnamurty S J Colloid Interface Sci; 2021 Oct; 600():480-491. PubMed ID: 34030008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]