These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31157789)

  • 1. Assessment and Characterization of Hyaloid Vessels in Mice.
    Wang Z; Liu CH; Huang S; Chen J
    J Vis Exp; 2019 May; (147):. PubMed ID: 31157789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OCT angiography of persistent hyaloid artery: a case report.
    Jeon H; Kim J; Kwon S
    BMC Ophthalmol; 2019 Jul; 19(1):141. PubMed ID: 31272412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice.
    McLenachan S; Magno AL; Ramos D; Catita J; McMenamin PG; Chen FK; Rakoczy EP; Ruberte J
    Exp Eye Res; 2015 Sep; 138():6-21. PubMed ID: 26122048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional OCT angiography reveals early physiological dysfunction of hyaloid vasculature in developing mouse eye.
    Kim TH; Son T; Yao X
    Exp Biol Med (Maywood); 2019 Jul; 244(10):819-823. PubMed ID: 31126209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo imaging of the hyaloid vascular regression and retinal and choroidal vascular development in rat eyes using optical coherence tomography angiography.
    Kim Y; Park JR; Hong HK; Han M; Lee J; Kim P; Woo SJ; Park KH; Oh WY
    Sci Rep; 2020 Jul; 10(1):12901. PubMed ID: 32733052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo detecting mouse persistent hyperplastic primary vitreous by Spectralis Optical Coherence Tomography.
    Lian Q; Zhao M; Li T; Wu K; Zhu D; Shang B; Mei T; Li W; Lin Y; Mao F; Liu Y; Liu C; Lu L; Zhao L
    Exp Eye Res; 2019 Apr; 181():271-276. PubMed ID: 30817926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autophagy-induced regression of hyaloid vessels in early ocular development.
    Kim JH; Kim JH; Yu YS; Mun JY; Kim KW
    Autophagy; 2010 Oct; 6(7):922-8. PubMed ID: 20818164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal OCT and OCTA monitoring reveals accelerated regression of hyaloid vessels in retinal degeneration 10 (rd10) mice.
    Kim TH; Son T; Le D; Yao X
    Sci Rep; 2019 Nov; 9(1):16685. PubMed ID: 31723168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early Postnatal Hyperoxia in Mice Leads to Severe Persistent Vitreoretinopathy.
    McMenamin PG; Kenny R; Tahija S; Lim J; Naranjo Golborne C; Chen X; Bouch S; Sozo F; Bui B
    Invest Ophthalmol Vis Sci; 2016 Dec; 57(15):6513-6526. PubMed ID: 27918825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of microvascular retinal changes in type I diabetic mice with optical coherence tomography angiography.
    Uehara H; Lesuma T; Stocking P; Jensen N; Kumar SR; Zhang MA; Choi S; Zhang X; Archer B; Carroll L; Ambati BK
    Exp Eye Res; 2019 Jan; 178():91-98. PubMed ID: 30268699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization.
    Meyer JH; Larsen PP; Strack C; Harmening WM; Krohne TU; Holz FG; Schmitz-Valckenberg S
    Exp Eye Res; 2019 Jul; 184():162-171. PubMed ID: 31002822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Norrie gene product is necessary for regression of hyaloid vessels.
    Ohlmann AV; Adamek E; Ohlmann A; Lütjen-Drecoll E
    Invest Ophthalmol Vis Sci; 2004 Jul; 45(7):2384-90. PubMed ID: 15223821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of retinal perfusion in mice using optical coherence tomography angiography.
    Alnawaiseh M; Brand C; Bormann E; Wistuba J; Eter N; Heiduschka P
    Exp Eye Res; 2017 Nov; 164():151-156. PubMed ID: 28889963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vivo Characterization of Spontaneous Retinal Neovascularization in the Mouse Eye by Multifunctional Optical Coherence Tomography.
    Augustin M; Wechdorn M; Pfeiffenberger U; Himmel T; Fialová S; Werkmeister RM; Hitzenberger CK; Glösmann M; Baumann B
    Invest Ophthalmol Vis Sci; 2018 Apr; 59(5):2054-2068. PubMed ID: 29677368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Coherence Tomography Angiography in Mice: Quantitative Analysis After Experimental Models of Retinal Damage.
    Smith CA; Hooper ML; Chauhan BC
    Invest Ophthalmol Vis Sci; 2019 Apr; 60(5):1556-1565. PubMed ID: 30995294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitation of hemodynamic function during developmental vascular regression in the mouse eye.
    Brown AS; Leamen L; Cucevic V; Foster FS
    Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2231-7. PubMed ID: 15980205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of vascular endothelial growth factor and placental growth factors during retinal vascular development and hyaloid regression.
    Feeney SA; Simpson DA; Gardiner TA; Boyle C; Jamison P; Stitt AW
    Invest Ophthalmol Vis Sci; 2003 Feb; 44(2):839-47. PubMed ID: 12556420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography.
    Spaide RF; Klancnik JM; Cooney MJ
    JAMA Ophthalmol; 2015 Jan; 133(1):45-50. PubMed ID: 25317632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Comparison Between Optical Coherence Tomography Angiography and Fundus Fluorescein Angiography Images: Effect of Vessel Enhancement.
    Mochi T; Anegondi N; Girish M; Jayadev C; Sinha Roy A
    Ophthalmic Surg Lasers Imaging Retina; 2018 Nov; 49(11):e175-e181. PubMed ID: 30457653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the 3D Connectivity of the Rat Inner Retinal Vascular Network Using OCT Angiography.
    Leahy C; Radhakrishnan H; Weiner G; Goldberg JL; Srinivasan VJ
    Invest Ophthalmol Vis Sci; 2015 Sep; 56(10):5785-93. PubMed ID: 26325417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.