These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31157808)

  • 1. Stochastic modeling of nanoparticle internalization and expulsion through receptor-mediated transcytosis.
    Deng H; Dutta P; Liu J
    Nanoscale; 2019 Jun; 11(23):11227-11235. PubMed ID: 31157808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entry modes of ellipsoidal nanoparticles on a membrane during clathrin-mediated endocytosis.
    Deng H; Dutta P; Liu J
    Soft Matter; 2019 Jun; 15(25):5128-5137. PubMed ID: 31190048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic simulations of nanoparticle internalization through transferrin receptor dependent clathrin-mediated endocytosis.
    Deng H; Dutta P; Liu J
    Biochim Biophys Acta Gen Subj; 2018 Sep; 1862(9):2104-2111. PubMed ID: 29959983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells.
    He B; Lin P; Jia Z; Du W; Qu W; Yuan L; Dai W; Zhang H; Wang X; Wang J; Zhang X; Zhang Q
    Biomaterials; 2013 Aug; 34(25):6082-98. PubMed ID: 23694903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caveolin-initiated macropinocytosis is required for efficient silica nanoparticles' transcytosis across the alveolar epithelial barrier.
    Detampel P; Tehranian S; Mukherjee P; Foret M; Fuerstenhaupt T; Darbandi A; Bogari N; Hlasny M; Jeje A; Olszewski MA; Ganguly A; Amrein M
    Sci Rep; 2022 Jun; 12(1):9474. PubMed ID: 35676405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry.
    Agudo-Canalejo J; Lipowsky R
    ACS Nano; 2015; 9(4):3704-20. PubMed ID: 25840649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis.
    Akamatsu M; Vasan R; Serwas D; Ferrin MA; Rangamani P; Drubin DG
    Elife; 2020 Jan; 9():. PubMed ID: 31951196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How clathrin-coated pits control nanoparticle avidity for cells.
    Zimmer O; Goepferich A
    Nanoscale Horiz; 2023 Jan; 8(2):256-269. PubMed ID: 36594629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of cellular uptake of viruses and nanoparticles via clathrin-mediated endocytosis.
    Banerjee A; Berezhkovskii A; Nossal R
    Phys Biol; 2016 Feb; 13(1):016005. PubMed ID: 26871680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticles Internalization through HIP-55-Dependent Clathrin Endocytosis Pathway.
    Guan K; Liu K; Jiang Y; Bian J; Gao Y; Dong E; Li Z
    Nano Lett; 2023 Dec; 23(24):11477-11484. PubMed ID: 38084909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transthyretin as a new transporter of nanoparticles for receptor-mediated transcytosis in rat brain microvessels.
    Kim SY; Choi ES; Lee HJ; Moon C; Kim E
    Colloids Surf B Biointerfaces; 2015 Dec; 136():989-96. PubMed ID: 26562191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receptor mediated transcytosis in biological barrier: The influence of receptor character and their ligand density on the transmembrane pathway of active-targeting nanocarriers.
    Song X; Li R; Deng H; Li Y; Cui Y; Zhang H; Dai W; He B; Zheng Y; Wang X; Zhang Q
    Biomaterials; 2018 Oct; 180():78-90. PubMed ID: 30025247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport Mechanisms of Butyrate Modified Nanoparticles: Insight into "Easy Entry, Hard Transcytosis" of Active Targeting System in Oral Administration.
    Wu L; Bai Y; Liu M; Li L; Shan W; Zhang Z; Huang Y
    Mol Pharm; 2018 Sep; 15(9):4273-4283. PubMed ID: 30102863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smart Strategies for Therapeutic Agent Delivery into Brain across the Blood-Brain Barrier Using Receptor-Mediated Transcytosis.
    Tashima T
    Chem Pharm Bull (Tokyo); 2020; 68(4):316-325. PubMed ID: 32238649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle size influences fibronectin internalization and degradation by fibroblasts.
    Bozavikov P; Rajshankar D; Lee W; McCulloch CA
    Exp Cell Res; 2014 Oct; 328(1):172-185. PubMed ID: 24995996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: Relevance for oral drug delivery.
    Neves AR; Queiroz JF; Costa Lima SA; Figueiredo F; Fernandes R; Reis S
    J Colloid Interface Sci; 2016 Feb; 463():258-65. PubMed ID: 26550783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein machineries defining pathways of nanocarrier exocytosis and transcytosis.
    Reinholz J; Diesler C; Schöttler S; Kokkinopoulou M; Ritz S; Landfester K; Mailänder V
    Acta Biomater; 2018 Apr; 71():432-443. PubMed ID: 29530823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core.
    Clark AJ; Davis ME
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12486-91. PubMed ID: 26392563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational study of the influence of nanoparticle shape on clathrin-mediated endocytosis.
    Li Y; Zhang M; Zhang Y; Niu X; Liu Z; Yue T; Zhang W
    J Mater Chem B; 2023 Jul; 11(27):6319-6334. PubMed ID: 37232123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid adaptation of endocytosis, exocytosis, and eisosomes after an acute increase in membrane tension in yeast cells.
    Lemière J; Ren Y; Berro J
    Elife; 2021 May; 10():. PubMed ID: 33983119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.